Publications
1. Schippers, Eric. The Calculus of conformal metrics and
univalence criteria for holomorphic functions. Thesis.
June 1999, University of Toronto.
2. Schippers, Eric. Distortion theorems for higher order
Schwarzian derivatives of univalent functions. Proc. Amer.
Math. Soc. 128 (2000), no. 11, 3241--3249.
3. Schippers, Eric. Conformal invariants and higher-order
Schwarz
lemmas . J. Anal. Math. 90 (2003),
217--241.
4. Schippers, Eric. Estimates on kernel functions of elliptically
Schlicht domains . Comput.
Methods Funct. Theory
2 (2002), no. 2, 579--596.
5. Schippers, Eric. Conformal invariants corresponding to pairs
of
domains. Future trends in geometric function theory, (Conf.
Proc.) 207--219, Rep. Univ. Jyväskylä Dep. Math. Stat. 92
Univ. Jyväskylä, Jyväskylä (2003).
6. Schippers, Eric. Behaviour of kernel functions under homotopic
variations of planar domains.
Comput. Methods Funct. Theory 4 (2004), no. 2,
283--298.
7. Radnell, David; and Schippers, Eric. Quasisymmetric
sewing in rigged Teichmueller space,
Communications in Contemporary Mathematics 8 (2006) no. 4, 481--534.
8. Schippers, Eric. The Power matrix, coadjoint action
and
quadratic differentials. J. Anal. Math. 98 (2006), 249--278.
9. Radnell, David; and Schippers, Eric. A
complex structure on the moduli space of rigged Riemann surfaces, Journal of
Geometry and Symmetry in Physics 5 (2006), 82--94.
10. Schippers, Eric. The
calculus of conformal metrics. Annal. Acad. Scient. Fenn. 32 (2007), 497--521.
11. Roth, Oliver; and Schippers, Eric. The Loewner and Hadamard variations.
with O. Roth,
Illinois J. Math 52 no. 4 (2008) 1399--1415.
12. Schippers, Eric; and Staubach, Wulf. Variation of Neumann and
Green functions under homotopies of the
boundary. with W.
Staubach, Israel J. Math.
173 no 1, (2009),
279--303.
13. Radnell, David; and Schippers, Eric. A complex structure on the set
of
quasiconformally extendible mappings
into a Riemann surface. J. Anal.
Math. 108 no. 1
(2009) 277--291.
14. Radnell, David; and Schippers, Eric. Fiber
structure and
local coordinates for the Teichmueller space of a bordered Riemann
surface. Conformal Geometry and Dynamics 14
(2010), 14--34. arxiv version.
15. Schippers, Eric. A power
matrix approach to the Witt algebra and Loewner equations. Computational Methods and
Function Theory 10
(2010) no 1, 399--420.
16. Schippers, Eric. The derivative
of the
Nehari functional. Annal. Acad. Scient.
Fenn. 35 (2010) no 1,
291--307.
17. Radnell, David; and Schippers, Eric. The semigroup of
rigged
annuli and the Teichmueller space of the annulus. Journal of the London
Mathematical Society 86 no 2 (2012),
321--342.
18. Penfound, Bryan; and Schippers, Eric. Power matrices for Faber polynomials and conformal
welding. Complex Variables and Elliptic Equations. 58 no 9 (2013) 1247--1259.
19. Radnell, David; Schippers, Eric; and Staubach, Wulf. Weil-Petersson class non-overlapping mappings into a Riemann surface.
Commun. Contemp. Math.
18, 1550060 (2016) [21 pages]
DOI: http://dx.doi.org/10.1142/S0219199715500601
20. Radnell, David; Schippers, Eric; and Staubach, Wulf. A Hilbert manifold structured on the Weil-Petersson class Teichmueller space of bordered Riemann surfaces. with D.
Radnell and W.
Staubach. Commun. Contemp. Math.
17, 1550016 (2015) [42 pages]
DOI: http://dx.doi.org/10.1142/S0219199715500169
20 1/2. Radnell, David; Schippers, Eric; and Staubach, Wulf. A Hilbert manifold structure on the refined Teichmueller
space of bordered Riemann surfaces, arXiv:1207.0973. (This paper was submitted in two parts above as 20 and 21. The
notation in 20 and 21 has been updated to reflect the results in 24 and
25 below).
21. Schippers, Eric; and Staubach, Wulf. A symplectic functional analytic proof of the conformal welding
theorem. Proc. Amer. Math. Soc. 143 (2015), no. 1, 265–278.
22.
Radnell, David; Schippers, Eric; and Staubach, Wulf.
Dirichlet space of multiply-connected domains with Weil-Petersson
class boundaries. arxiv:1309.4337. (Remark: never published. More general results obtained and published in "Dirichlet spaces of domains bounded by quasicrcles" below.)
23. Radnell, David; Schippers, Eric; and Staubach, Wulf. Quasiconformal maps of bordered Riemann surfaces with L^2 Beltrami differentials. Jounal d'Analyse Mathematique 132 (1) (June 2017) 229--245. Note: first posted in 2014, see 24 1/2 below.
24. Radnell, David; Schippers, Eric; and Staubach, Wulf. Convergence of the Weil-Petersson metric on the Teichmueller space of bordered Riemann surfaces. Communications in Contemporary Mathematics. 19 (1), (2017). http://dx.doi.org/10.1142/S0219199716500255 Note: first posted on arxiv in 2014, see below..
24 1/2. Radnell, David; Schippers, Eric; and Staubach, Wulf.
A convergent Weil-Petersson metric on the Teichmueller space of
bordered Riemann surfaces. arXiv:1403.0868 (March 2014)
(This arxiv paper contains the union of the material in
publications 24 and 25.)
25.
Remer, Krista; and Schippers, Eric. Faber-Tietz functions and Grunsky coefficients for maps into a
torus. Complex Analysis and Operator Theory. 9 (2015) no. 8, 1663--1679.
26. Radnell, David; Schippers, Eric; and Staubach, Wulf. Dirichlet problem and Sokhotski-Plemelj jump formula on Weil-Petersson class quasidisks. with D. Radnell and W. Staubach. Annales Academiae Scientiarum Fennicae. 41 (2016), 1--9.
27. Schippers, Eric. Conformal invariants associated with quadratic differentials. arXiv:1608.00790.
Israel J. Math. 223 (2018) no. 1, 449–491. Springer SharedIt link.
28.
Radnell, David; Schippers, Eric; and Staubach, Wulf.
Quasiconformal Teichmuller theory as an analytic foundation for
two-dimensional conformal field theory. arXiv: 1605.004499v1
In `Lie algebras, Vertex Operator Algebras and Related Topics'.
eds Katrina Barron, Elizabeth Jurisich, Antun Milas, Kailash Misra.
Contemporary Mathematics 695, Amer. Math. Soc. (2017).
29.
Schippers, Eric; and Staubach, Wulf. Well-posedness of a Riemann-Hilbert problem on d-regular
quasidisks. Annales
Academiae Scientiarum Fennicae. 42 (2017), 141--147.
30.
Schippers, Eric; and Staubach, Wulf. Comparison moduli spaces. with W. Staubach. Chapter
in:
Complex analysis and dynamical systems,
231–271, Trends Math., Birkhäuser/Springer, Cham, 2018.
arXiv:1706.09168v2
31. Schippers, Eric. Quadratic differentials and conformal invariants. http://link.springer.com/article/10.1007/s41478-016-0014-5 The Journal of Analysis 24 (2) (2016) 209--228. DOI 10.1007/s41478-016-0014-5 Springer SharedIt link: http://rdcu.be/pRuv
32. Schippers, Eric; and Staubach, Wulf. Harmonic reflection in quasicircles
and well-posedness of a Riemann-Hilbert problem on quasidisks. arXiv:1604.08453v3 Journal of Mathematical Analysis and Applications. 448 (2) 864--884, (2017).
33. Schippers, Eric; and Staubach, Wulf. Riemann boundary value problem on quasidisks, Faber isomorphism and Grunsky operator. Complex Anal. Oper. Theory 12 (2018), no. 2, 325–354.
34.
Radnell, David; Schippers, Eric; and Staubach, Wulf.
Dirichlet spaces of domains bounded by quasicrcles. Communications in Contemporary Mathematics 22 no. 03, 1950022 (2020) arXiv:1705.01279v1.
35.
Radnell, David; Schippers, Eric; and Staubach, Wulf. A
Model of the Teichmueller space of genus-zero bordered surfaces
by period maps. Conformal Geometry and. Dynamics 23 (2019), 32-51
arXiv:1710.06960
https://www.ams.org/journals/ecgd/2019-23-03/S1088-4173-2019-00332-1/
36.
Schippers, Eric; and Staubach, Wulf. Transmission of
harmonic functions through quasicircles on compact Riemann surfaces. Annales Academiae Scientiarum Fennicae, Volumen 45, (2020), 1111–1134
.
arXiv:1810.02147v2.
37.
Schippers, Eric; and Staubach, Wulf. Plemelj-Sokhotski
isomorphism for quasicircles in Riemann surfaces and the Schiffer
operators. Mathematische Annalen 378 (2020), 1613–1653 https://doi.org/10.1007/s00208-019-01922-4 https://link.springer.com/article/10.1007/s00208-019-01922-4
38.
Radnell, David; Schippers, Eric; Shirazi, Mohammad; and Staubach,
Wulf. Schiffer operators and computation of a determinant
line in conformal field theory. New York J. Math. 27 (2021) 253–271.
39.
Schippers, Eric; Shirazi, Mohammad; and Staubach, Wulf.
Schiffer operators and approximations on Riemann surfaces
bordered by quasicircles. The Journal of Geometric Analysis 31, pages 5877–5908 (2021) https://link.springer.com/article/10.1007/s12220-020-00508-w
40.
Schippers, Eric; and Staubach, Wulf. Analysis on quasidisks: a
unified approach through transmission and jump problems. EMS Surv. Math. Sci. 9 (2022), no. 1, pp. 31–97
41. Schippers, Eric; and Staubach, Wulf. Scattering theory of harmonic one-forms on Riemann surfaces. arXiv:2112.00835
42. Schippers, Eric; and Staubach, Wulf.. Weil-Petersson Teichmüller theory of surfaces of infinite conformal type. arXiv:2302.06408
43. Schippers, Eric; and Shirazi, Mohammad. Faber series for L2 holomorphic one-forms on Riemann surfaces with boundary. arXiv:2303.15677
44. Kristel, Peter; and Schippers, Eric. Grassmannians of Lagrangian Polarizations. arXiv:2304.10774
Selected Slides
The Weil-Petersson metric on a Teichmuller space of bordered surfaces. AMS Special Session on Complex Function Theory and Special Functions, Lubbock, TX, April 2014.
Conformal welding and the sewing equations. Rutgers University Lie Groups/Quantum Mathematics Seminar. Piscataway, NJ. April 2014.
Some analytic problems in conformal field theory. MSRI Workshop on Infinite Dimensional Geometry. Berkeley, CA. December 2013.
A correspondence between conformal field theory and Teichmuller theory. McGill Analysis Seminar. Montreal, QC. February 2013.
A functional-analytic proof of the conformal welding theorem. CMS Winter Meeting, Ottawa December 2012.
The Neretin-Segal semigroup and Teichmueller space of an annulus. Second Bavaria-Quebec Meeting, Wuerzburg, Germany, November 2010.
The derivative of the Nehari functional. AMS Special Session on Contemporary Complex and Special Function Theory,
Baylor University, Waco, TX.October 2009.
The Loewner and Hadamard variations. CMFT 2009, Bilkent University, Ankara, Turkey, June 2009.