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Abstract

The coefficients of a quadratic differential which is changing under the Loewner flow
satisfy a well-known differential system studied by Schiffer, Schaeffer and Spencer, and
others. By work of Roth, this differential system can be interpreted as Hamilton’s equa-
tions. We apply the power matrix to interpret this differential system in terms of the
coadjoint action of the matrix group on the dual of its Lie algebra. As an application, we
derive a set of integral invariants of Hamilton’s equations which is in a certain sense com-
plete. In function theoretic terms these are expressions in the coefficients of the quadratic
differential and Loewner map which are independent of the parameter in the Loewner
flow.
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1 Introduction

1.1 Statement of results

Let f(z) be a holomorphic function such that f(0) = 0 and f ′(0) 6= 0. The “power matrix”
of a locally conformal map f is the upper triangular matrix whose m,nth entry is the nth
coefficient of the power series of fm. This matrix representation has existed for quite some
time in one form or another, and is closely related to the “Faá di Bruno formula” for the
power series expansion of a composition of two functions (see [1]). In different contexts it
has been observed to simplify complicated expressions or reveal identities in function theory.
Jabotinski [3] showed that the Faber polynomials (or rather their derivatives) have a nice
interpretation in terms of the power matrix, and went on to show that various identities
relating to the Grunsky matrix and Faber polynomials have simple explanations in the matrix
model. Identities concerning the coefficients of the Loewner flow in terms of the power matrix
appear in Schiffer and Tammi [12], along with further applications to the Nehari and Grunsky
inequalities.

The object of this paper is to exhibit more of this algebraic structure which has not
yet been observed. A secondary purpose is to develop the theory of the power matrix in a
systematic way, paying full attention to geometric and algebraic considerations such as the
standard trick of trivializing the tangent and contangent bundle in terms of the Lie algebra.
The trivialization is a key element in the results of this paper.

The main results are as follows:
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1) Fix a quadratic differential ζ−2P (ζ)dζ2 and Loewner chain which is admissible for
ζ−2P (ζ)dζ2, and pull it back to the disc to get a time-dependent quadratic differential
ζ−2Qt(ζ)dζ2. (This situation arises by combining the Loewner method and Schiffer’s the-
orem and was investigated by Schaeffer and Spencer [10] and Schiffer [11] among others.)
The time dependence of the coefficients of the quadratic differential are governed by a simple
differential system ([10] p135). It is shown in the present paper that this differential system,
when written in the matrix model, has a simple expression in terms of the coadjoint action
of the power matrix on its Lie algebra (Theorem 2.)

Roth [9] showed that the quadratic differential is closely related to a Hamiltonian function
arising in the control-theoretic view of Schiffer’s equation, and that the differential system for
the coefficients can be thought of as Hamilton’s equations. This facilitated the recognition in
the present work of the role of the coadjoint map (see discussion below). Roth also integrated
this differential system. An alternate but equivalent form for the solution of this differential
system in terms of the adjoint map is given here. This leads to the second main result.

2) We define an infinite series of functions on the cotangent bundle to the power matrix
which are invariant under Hamilton’s equations (Theorem 4), using the algebraic and geomet-
ric structure described above. In function theoretic terms, these are explicit expressions in the
coefficients of the Loewner map and the quadratic differential which are time-independent
(Corollary 2). These identities have two very interesting properties: they do not involve
the infinitesimal generator in the Loewner equation, and they are independent of the func-
tional under consideration. In some sense the identities are a complete set of invariants for
Hamilton’s equations, at least for finite coefficient estimates.

Although in principle this algebraic structure could have been observed from the work of
Schaeffer and Spencer, it must be emphasized that it is work of Roth [9] that really makes this
possible. (The fact that the relation to the coadjoint action has not been observed in over fifty
years is evidence for this assertion). The reason is simply stated. Roth’s remarkable result
is that Schiffer’s differential equation is equivalent to Pontryagin’s maximum principle (in
the context of the Loewner method). One of the key steps in demonstrating this equivalence
was his observation that the coefficients of the quadratic differential and the coefficients of
a “dual vector” arising in the control-theoretic picture satisfy the same differential system.
When combined with the matrix model, this association of the coefficients of the quadratic
differential with the dual vector leads directly to the expression of the differential system in
terms of the coadjoint action given here.

This matrix model is natural from several points of view. Loewner’s method is at heart
a Lie-theoretic one; in fact it is much closer to Lie’s conception in terms of transformation
groups. The power matrix simply serves as a bridge between Loewner’s description of locally
biholomorphic functions as a semigroup of transformations and the currently fashionable idea
of a Lie group. It should also be pointed out that the adjoint map is essential to the problem
of constructing geometric invariants.

The problem of linking the semigroup perspective with the standard approach to Lie
groups in different specific circumstances can be a difficult problem. One technique for doing
so, the “method of prolongations” [6], produces exactly the picture derived here when applied
to the group of two by two conformal matrices. We will not pursue this here, since the picture
we obtain here does not require this general machinery.

The expression for Hamilton’s equations given here (4.2) is standard in the theory of
Hamiltonian systems on Lie groups ([4] chapter 12) and follows directly from our choice of
Hamiltonian function. In the present case we are dealing with a non-abelian group so a term
involving the adjoint map appears. The Lie group formalism is essential, since this crucial
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term disappears in the familiar form of Hamilton’s equations on Rn.

1.2 Outline

In Section 2 we describe the matrix group and develop its algebra and geometry. First the
definitions are given in Section 2.1. The Lie algebra is described in Section 2.2. The tangent
bundle, cotangent bundle and complex structure are defined in Section 2.3. In Section 2.4
we present some identities related to left and right multiplication on the tangent space level.
These identities are the main tools for recognizing the matrix structure present in various
function-theoretic objects such as the Loewner equation, the coefficients of the quadratic
differential, and Schiffer’s equation. In Section 3 we give the form of the Loewner equation
in the matrix model.

The main results are presented in Section 4. In Section 4.1 we define the adjoint map and
its relation to Hamilton’s equations in our setting. Section 4.2 presents the relation between
the coadjoint map and the differential system for the quadratic differential. The relation to
Roth’s work is clarified in Section 4.3, where his solution of the differential system is written
in terms of the adjoint map.

Finally in Section 5 we define the integral invariants of Hamilton’s equations. Explicit
expressions are given in Section 5.2.

A notation key is provided in Section 6.

2 Algebraic and geometric structure of the group of locally
conformal maps

In this section we define the algebraic and geometric structure of the matrix model, including
the group itself and its Lie algebra, left and right multiplication, and the trivialization of the
tangent and cotangent bundle through right multiplication.

2.1 The power matrix

It is possible to represent a function which is biholomorphic in a neighbourhood of 0 and
normalized so that f(0) = 0 as an infinite matrix [f ]. In this representation, composition
of functions becomes matrix multiplication: [f ◦ g] = [f ][g]. Thus the matrix representation
respects the semigroup structure.

Let f(z) = f1z + f2z
2 + f3z

3 + · · · . Then [f ] is the matrix whose entry [f ]mn in the mth
row and nth column is the nth coefficient of the function f(z)m. Here m and n range from
1 to ∞. Of course [f ]1n = fn; also [f ]mn are functions of [f ]1n for m > 1. The matrix is clearly
upper triangular; thus matrix multiplication involves no infinite sums.

We show that [f ◦ g] = [f ] · [g]. Let g(z) = g1z + g2z
2 + · · · be another such function,

biholomorphic in a neighbourhood of 0. Then

(f ◦ g)m(z) =
∞∑

k=m

[f ]mk g(z)k

=
∞∑

k=m

[f ]mk
∞∑

n=k

[g]kn zn

=
∞∑

n=m

(
n∑

k=m

[f ]mk [g]kn)zn
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and thus [f ◦ g]mn =
∑m

k=1[f ]mk [g]kn. It immediately follows that if f−1 is the inverse of f in a
neighbourhood of the origin, then [f−1] = [f ]−1.

Thus we define G to be the group of upper triangular matrices arising from such maps.

Remark 1 (Negative powers of f). This matrix can be extended in two different ways.
Jabotinski [3] includes the negative powers of f ; i.e. he associates to f a doubly-infinite matrix
with rows m = −∞, . . . ,∞ where for m negative the mth row consists of the coefficients of
1/f |m|. Schiffer and Tammi [12] include the coefficients of log (f(z)/z) as a zeroth row, along
with the positive powers of the matrix. Both arise in applications involving Grunsky-type
inequalities.

It’s easy to see that the coefficients of powers of a locally univalent function g such that
g(0) = 0 are polynomial functions in the coefficients of g. These polynomial functions are
sometimes referred to as ‘Bell polynomials’. There is a convenient rule for generating the
entries of [g] inductively.

Proposition 1.

[g]k+1
n =

k + 1
n

n−k∑

l=1

l[g]1l [g]kn−l.

Proof. By definition

g(z)k+1 =
∞∑

n=k+1

[g]k+1
n zn.

Differentiating both sides, we get

(k + 1)g(z)k · g′(z) =
∞∑

n=k+1

n [g]k+1
n zn−1.

Expanding the left side,

(k + 1)g(z)k · g′(z) = (k + 1)

( ∞∑

m=k

[g]kmzm

)( ∞∑

l=1

l [g]1l zl−1

)

= (k + 1)
∞∑

m=k

(
m−k+1∑

l=1

l [g]1l [g]km−l+1

)
zm

Letting m = n−1 in the last expression and equating coefficients proves the proposition.

This gives us a completely algebraic description of the semigroup of locally univalent func-
tions defined in a neighbourhood of the origin and such that f(0) = 0. It can be represented
as the group G of infinite upper triangular matrices




x1
1 x1

2 x1
3 · · ·

0 x2
2 x2

3 · · ·
0 0 x3

3 · · ·
...

...
...

. . .




where x1
1 6= 0, the first row satisfies

lim sup|x1
n|1/n < ∞

and the remaining rows satisfy the relations given in Proposition 1.
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2.2 Description of the Lie algebra

We now construct the Lie algebra of G. Consider the tangent space at the identity of this
matrix group, using the variation

Gλ(z) = z + λh(z) + O(λ2), (2.1)

where λ is a complex parameter, and h(z) is a holomorphic function in a neighbourhood of
0. We assume that Gλ(0) = 0 and h(0) = 0. The term O(λ2) is understood to be uniform on
relatively compact sets in the domain of definition of G(z). We have by an easy computation

d

dλ

∣∣∣∣
λ=0

[Gλ]mn = m[h]1n−m+1.

So it is reasonable to make the following definition.

Definition 1. Let g denote the set of infinite upper triangular matrices whose entry in row
m and column n is mhn−m+1 for some holomorphic function h defined in a neighbourhood of
the origin. These matrices will be denoted by 〈h〉. i.e. if h(z) = h1z + h2z

2 + · · · , then

〈h〉mn = mhn−m+1.

Explicitly,

〈h〉 =




h1 h2 h3 · · ·
0 2h1 2h2 · · ·
0 0 3h3 · · ·
...

...
...

. . .




Remark 2. Note that
d

dλ

∣∣∣∣
λ=0

[Gλ]mn 6=
[

d

dλ

∣∣∣∣
λ=0

Gλ

]m

n

in general; but rather
d

dλ

∣∣∣∣
λ=0

[Gλ]mn =
[

d

dλ

∣∣∣∣
λ=0

(Gm
λ )

]1

n

.

Remark 3. Note that we have extended the notation [f ]1n and applied it to functions are
not elements of G. For example, in the paragraph preceding Definition 1, h might not be a
biholomorphism in a neighbourhood of 0; in Remark 2, Gm

λ certainly is not. Thus neither
should be regarded as elements of G. When applied to functions that are not in G, the
notation [ ]1n will be simply taken to mean the nth coefficient of the function.

The Lie bracket of a pair of elements 〈h〉, 〈j〉 ∈ g is the commutator

[〈h〉 , 〈j〉] ≡ 〈h〉 〈j〉 − 〈j〉 〈h〉 (2.2)

where 〈h〉 〈j〉 refers to the product of the two matrices.
Next we construct a useful basis, which is natural both algebraically and complex analyt-

ically. Define ek =
〈
zk+1

〉
; i.e. ek is the matrix with n in the nth row and n + kth column

for each n, and all other entries zero. For example,

e2 =




0 0 1 0 0
0 0 0 2 0 · · ·
0 0 0 0 3

...
. . .




We have
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Proposition 2. By the definition of the Lie bracket (2.2),

[ek, el] = (k − l)ek+l.

Proof. We have that ek ·el is the matrix with n(n+k) in the nth row and n+k+ lth column,
and is otherwise zero. Similarly for el · ek with the obvious changes. Thus, in the nth row
and n + k + lth column of [ek, el] the entry is n(n + k)−n(n + l) = (k− l)n; all other entries
are zero.

Remark 4. Thus g is the “positive part” of the Virasoro algebra with zero central charge
[5]. (The author is grateful to D. Radnell for this observation.)

2.3 Tangent and cotangent bundle

The structure of the tangent and cotangent bundle, denoted TG and T∗G respectively, will
now be described. We will not carefully develop the differentiable structure of G, TG and
T∗G, so in a sense this description is purely formal. Where these issues threaten, function
theory takes care of the problem in a standard way, at least for the results of this paper. This
will of course be pointed out in the appropriate places.

An element of the tangent bundle TG based at a point [wt0 ] can be thought of as the
derivative of a curve [wt] ∈ G at t = t0, that is

d

dt

∣∣∣∣
t=t0

[wt] ∈ T[wt0 ]G.

where it is assumed that the curve is given by a variation of the form (2.1). Note that this
new matrix is not an element of G and does not in general satisfy the relations of Proposition
1. We will denote the tangent space at [wt0 ] by T[wt0 ]G.

An element of the cotangent bundle T∗G at a base point [wt0 ] is a linear functional on
T[wt0 ]G. Denote the cotangent space at [wt0 ] by T∗[wt0 ]G. Although G is infinite-dimensional,
we will avoid possible problems by restricting our attention to linear functionals which are in
some sense finite. We will make this precise shortly. For now the cotangent bundle will be
treated formally.

We now define the right and left multiplication maps. On the group level, they are exactly
what their names imply: for [f ], [g] ∈ G, the right multiplication map R[f ] is (R[f ])[g] = [g][f ]
and the left multiplication map L[f ] is (L[f ])[g] = [f ][g]. The derivatives of these maps act
on TG as follows.

Right multiplication is given by

R[f ]∗ : T[wt0 ]G → T[wt0 ][f ]G (2.3)

d

dt

∣∣∣∣
t=t0

[wt] 7→ d

dt

∣∣∣∣
t=t0

(R[f ]∗[wt]) =

(
d

dt

∣∣∣∣
t=t0

[wt]

)
[f ].

and similarly

L[f ]∗ : T[wt0 ]G → T[f ][wt0 ]G (2.4)

d

dt

∣∣∣∣
t=t0

[wt] 7→ d

dt

∣∣∣∣
t=t0

(L[f ]∗[wt]) = [f ]

(
d

dt

∣∣∣∣
t=t0

[wt]

)
.
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Thus by the linearity of matrix multiplication, R[f ]∗ and L[f ]∗ are also given by multiplication
by [f ] on the right and left respectively. However we will retain the lower-star notation in
order to distinguish between the maps on the group level and on the tangent space level.

Finally, we define the maps R[f ]∗ and L[f ]∗ on the cotangent bundle as follows. Given
ξ ∈ T∗[w]G, R[f ]∗ξ is the element of T∗[w][f ]−1G given by

(R[f ]∗ξ)(v) = ξ(R[f ]∗v)

for any v ∈ T[w][f ]−1G. Similarly L[f ]∗ : T∗[w]G → T∗[f ]−1G is given by

(L[f ]∗ξ)(v) = ξ(L[f ]∗v)

for any v ∈ T[f ]−1[w]G.
The tangent and cotangent bundle of any group are “trivializable”: they can be written as

a product of G with g or g∗ respectively. Given d
dt

∣∣
t=t0

[wt] ∈ T[wt0 ]G as above, we represent
it with an element of G× g as follows:

TG ∼= G× g

d

dt

∣∣∣∣
t=t0

[wt] 7→
(

[wt0 ],R[w−1
t0

]∗
d

dt
[wt0 ]

)
(2.5)

= ([wt0 ], 〈h〉),

where 〈h〉 = d
dt

∣∣
t=t0

[wt][wt0 ]
−1 ∈ g according to the standard identification of g with the

tangent space at the identity T[z]G (see Definition 1). Similarly, given an element ξ[w] ∈
T∗[w]G, we represent it with an element of G× g∗:

T∗G ∼= G× g∗

ξ[w] 7→ ([w],R[w]∗ξ[w]) (2.6)
= ([w], α)

where α ∈ T ∗[z]G = g∗.
The Lie algebra g has an almost complex structure J given by multiplication by i; that is

J 〈h〉 = 〈ih〉. This almost complex structure is invariant under the map 〈h〉 7→ [w] 〈h〉 [w]−1

for any [w]. To see this, simply note that the action of J on g can be represented with
multiplication by iI where I is the identity matrix:

[w]J 〈h〉 [w]−1 = [w] iI 〈h〉 [w]−1 = iI [w] 〈h〉 [w]−1 = J[w] 〈h〉 [w]−1.

The almost complex structure on g extends to TG via the trivialization by right multi-
plication:

J 〈h〉 [w] = 〈ih〉 [w].

It follows immediately from the definition that this almost complex structure is right invariant;
since it is invariant under 〈h〉 7→ [w] 〈h〉 [w]−1 for any [w], it is also left invariant. That is

JR[w]∗ = R[w]∗ J and J L[w]∗ = L[w]∗ J.

In the trivialization, the almost complex structure has the form J([w], 〈h〉) = ([w], 〈ih〉).
The Lie algebra g can be treated either as a real linear space with basis {e0, ie0, e1, ie1, . . .}

or a complex linear space with basis {e0, e1, . . .}. Strictly speaking the dual of the Lie algebra
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g∗ should be regarded as the space of real linear functionals on g, but we can identify it with
the space of complex linear functionals as follows. A real linear functional αR extends to a
complex linear functional αC via

αC(〈h〉) = αR(〈h〉)− iαR(J 〈h〉).

Conversely, given a complex linear functional αC we can recover the real linear functional
simply by taking the real part:

αR(〈h〉) = Re(αC(〈h〉)).

It’s not hard to check that under this identification JαR ↔ iαC.
The natural complex structure on g∗ is given by JαR(〈h〉) ≡ αR(J 〈h〉), so we see that this

just becomes multiplication by i in the representation of g∗ by complex linear functionals. As
before we can extend J to T∗[w]G for each [w] by right multiplication, and in the trivialization
this of course has the form J([w], α) = ([w], Jα).

In the following we will always use the complex model of g∗ unless stated otherwise.
We now return to the issue of the behaviour of the linear functionals on g. This is bound

together with the problem of constructing a differentiable structure on G, which can be done
in different ways depending on the function-theoretic application one has in mind. It is an
interesting question whether there is a canonical way of doing this which is suitable for most
“reasonable” applications.

However in this paper the applications are to finite coefficient functionals on the class of
univalent functions. As will be seen, the consequence of this choice of application is to restrict
to elements of g∗ which are zero when applied to all but finitely many basis vectors ek ∈ g. In
the trivialization of the cotangent bundle this means that we consider only elements ([w], α)
where

α =
n∑

s=0

αse∗s

for some finite n and e∗s are defined by

e∗s(el) =

{
1 if s = l

0 if s 6= l.
(2.7)

Thus it is possible to avoid this issue.

2.4 Some identities for left and right multiplication

We now derive some identities related to the maps L[F ]∗ and R[F ]∗. These identities are
a crucial tool for identifying the matrix structure present in expressions arising in function
theory.

Proposition 3 (right multiplication). Let j and f be functions which are biholomorphic
in a neighbourhood of 0, such that j(0) = 0 and f(0) = 0. Then,

[
fm−1j ◦ f

]1

n
=

∑

k

〈j〉mk [f ]kn .
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Proof. Consider any variation Gλ ◦ f = f(z) + λj ◦ f + O(λ2) as in Section 2.2. Because the
convergence is uniform in a neighbourhood of 0, we can differentiate the Taylor series term
by term. We have

d

dλ

∣∣∣∣
λ=0

[Gλ ◦ f ]mn =
[

d

dλ

∣∣∣∣
λ=0

(Gλ ◦ f)m

]1

n

= m
[
fm−1j ◦ f

]1

n
.

On the other hand, one can exploit the linearity of the matrix model to get that

d

dλ

∣∣∣∣
λ=0

[Gλ ◦ f ]mn =
d

dλ

∣∣∣∣
λ=0

([Gλ]) [f ] = m
∑

k

[j]1k−m+1 [f ]kn .

Now apply Definition 1.

The next identity corresponds to left multiplication.

Proposition 4 (left multiplication). Let j and g be functions which are biholomorphic in
a neighbourhood of 0, and such that j(0) = 0 and g(0) = 0. Then,

m
[
gm−1 g′ j

]1

n
=

∑

k

[g]mk 〈j〉kn

where one sums over the index k.

Proof. Consider the variation g ◦ Gλ with Gλ(z) = z + λj(z) + O(λ2) where j(0) = 0. We
have, since O(λ2) is uniform in some neighbourhood of the origin,

d

dλ

∣∣∣∣
λ=0

[g ◦Gλ]mn =
[

d

dλ

∣∣∣∣
λ=0

(g ◦Gλ)m

]1

n

=
[
m (g ◦Gλ)m−1 g′ ◦Gλj

]1

n

∣∣∣
λ=0

=
[
mgm−1 g′ j

]1

n

On the other hand, using the linearity of matrix multiplication,

d

dλ

∣∣∣∣
λ=0

[g ◦Gλ]mn =
∑

k

[g]mk
d

dλ

∣∣∣∣
λ=0

[Gλ]kn

=
∑

k

[g]mk 〈j〉kn

by Definition 1.

Finally we give a mixed version of these two identities.

Proposition 5 (left and right multiplication). Let j, f , and g be as in the previous two
propositions. Then [

g′ ◦ f j ◦ f
]1

n
=

∑

l,k

[g]1l 〈j〉lk [f ]kn .
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Proof. Using the fact that O(λ2) is uniform on compact sets, we have

d

dλ

∣∣∣∣
λ=0

[g ◦Gλ ◦ f ]1n =
[
g′ ◦ f j ◦ f

]1

n
.

On the other hand one can use the linearity of matrix multiplication to get that

d

dλ

∣∣∣∣
λ=0

[g ◦Gλ ◦ f ]1n =
∑

l,k

[g]1l 〈j〉lk [f ]kn .

3 The Loewner equations

We give a representation of the Loewner equations

d

dt
wt(z) = −wt(z)pt(w(z)) (3.1)

and
d

dt
Ft(z) = zF ′

t(z)pt(z) (3.2)

in terms of the power matrix. Here Ft is a Loewner chain, wt = F−1
t ◦ F , and pt ∈ P where

P is the class of holomorphic functions from the disc into the right half plane normalized so
that p(0) = 1.

Variations of the matrix form of the Loewner equation appear several times in the litera-
ture. Schiffer and Tammi ([12], equation (27)) give the full differential equation of Proposition
7 for slit mappings in terms of [Ft]mn , but without the explicit identification of the matrix
〈zpt(z)〉, which simplifies the notation somewhat. The first row of Proposition 7 is given in
Roth [8] (equation II.96) for the full class P, and with notation nearly identical to that used
below. Friedland and Schiffer [2] give a similar formula, again for the first row of the matrix,
for an equation related to the Loewner equation usually called the “Friedland-Schiffer” equa-
tion. They give a matrix form for the infinitesimal generator, but with somewhat different
notation, and restricted to slit mappings (equation 3.10).

First we write the ordinary Loewner equation in terms of the power matrix.

Proposition 6. The Loewner equation (3.1), when written in terms of the coefficients of wt

and pt, is equivalent to the matrix equation

d

dt
[wt] = −〈zpt〉 [wt] .

Proof. If the matrix equation above holds, then the first row is the Loewner equation, ex-
pressed in terms of the coefficients of the Taylor series of wt. Conversely, if the Loewner
equation (3.1) holds, then

d

dt
(wm

t ) = mwm−1
t

dwt

dt
= −mwm

t pt ◦ wt.

So, applying Proposition 3 with j(z) = zpt(z), and Definition 1,

d

dt
[wt]

m
n = −m [wm

t pt ◦ wt]
1
n

= −〈zpt〉mk [wt]
k
n
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Next we give a representation of the partial differential equation in the matrix model.

Proposition 7. The Loewner partial differential equation (3.2), when written in terms of
the coefficients of Ft and pt, is equivalent to the matrix differential equation

d

dt
[Ft] = [Ft] 〈zpt〉 .

Proof. Assuming that (3.2) holds, we have that

d

dt
(Fm

t ) = mFm−1
t

dFt

dt
= mFm−1

t zF ′
tp.

Using Proposition 4 with j(z) = zpt(z) and Definition 1,

d

dt
[Ft]

m
n = m

[
Fm−1

t zF ′
tpt

]1

n

= [Ft]
m
k 〈zpt〉kn .

Conversely, if the matrix equation is satisfied, one can apply Proposition 4 to the first row of
the equation to derive Loewner’s equation for the coefficients.

An alternate proof is to simply differentiate the expression

[Ft] [wt] = I

which follows directly from the fact that Ft(wt(z)) = z.

We will sometimes refer to the matrix equation itself as Loewner’s equation.

Remark 5. The matrix representation of the Loewner equation does not have much to do
with Loewner chains. In fact any one parameter family of mappings satisfies the equations
above, although if Ft is not a Loewner chain the infinitesimal generator pt need not be in P.
With suitable assumptions on the one-parameter family guaranteeing differentiability of the
coefficients (e.g. local uniform convergence in a neighbourhood of zero as t → t0), one gets
the matrix differential equations of Propositions 6 and 7 simply by using the left or right
trivialization and setting 〈zpt〉 = R[wt]∗(d[wt]/dt) or 〈zpt〉 = L[Ft]∗(d[Ft]/dt) respectively.

4 Quadratic differentials under the Loewner flow and the ad-
joint map

4.1 The Adjoint maps and Hamilton’s equations

Any Lie group acts on itself by conjugation. This gives rise to the adjoint and coadjoint
actions on g and g∗ respectively.

Definition 2. Each element of G gives rise to an automorphism of the group via

Ad[f ] : G → G

[g] 7→ Ad[f ](g) = [f ][g][f ]−1.

The derivative of this map at the identity is an automorphism of the Lie algebra g:

Ad[f ]∗ : g → g

〈j〉 7→ Ad[f ]∗(〈j〉) = [f ] 〈j〉 [f ]−1.

11



Remark 6. Note that in the definition of Ad∗ we are using the fact that the derivative of
left and right multiplication is also given by left and right multiplication.

Definition 3. Each element of the Lie algebra gives rise to an endomorphism of the Lie
algebra as follows:

ad 〈j〉 : g → g

〈h〉 7→ [〈j〉 , 〈h〉].
The dual of this map is defined for fixed α ∈ g∗ by

ad 〈j〉∗ α (〈h〉) = α(ad 〈j〉 〈h〉).
The next proposition gives the relation between ad and Ad.

Proposition 8. If
d

dt
[φt] = 〈jt〉 [φt]

then for any 〈h〉 ∈ g
d

dt

(
Ad[φ−1

t ]∗ 〈h〉
)

= −Ad[φ−1
t ]∗[〈jt〉 , 〈h〉]

and for any α ∈ g∗
d

dt

(
Ad[φ−1

t ]∗α
)

= −ad 〈jt〉∗Ad[φ−1
t ]∗α.

Proof. By differentiating [φ−1
t ][φt] we have that

d

dt
[φ−1

t ] = −[φ−1
t ] 〈jt〉 .

The first equation follows by differentiating [φ−1
t ] 〈h〉 [φt]. The second equation follows directly

from the first.

Remark 7. Note that we are not making any assumptions on 〈jt〉; all that is necessary is
that the coefficients be differentiable and the matrix equation d[φt]/dt = 〈jt〉 [φt] hold. The
second equation of Proposition 8 only involves finite sums. The third equation can involve
infinite sums; so it should be temporarily regarded as a formal relation. However we will be
imposing restrictions that remove this problem (Remark 9 ahead).

Proposition 9 (Expression for ad∗ in the basis {e0, e1, . . .}). Let

〈zp〉 =

〈 ∞∑

n=0

pnzn

〉
=

∞∑

n=0

pnen ∈ g

and

α =
∞∑

s=0

αse∗s ∈ g∗.

Then

ad 〈zp〉∗ α =
∞∑

s=0




∞∑

j=s

αj(j − 2s)pj−s


 e∗s;

thus the coefficients satisfy the differential system

dαs

dt
=

∞∑

j=s

αj(j − 2s)pj−s. (4.1)
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Proof.

ad 〈zp〉∗ e∗j (es) = e∗j (ad 〈zp〉 (es))

= e∗j

([ ∞∑

n=0

pnen, es

])

= e∗j

( ∞∑

n=0

pn(n− s)en+s

)

= pj−s(j − 2s)

for j ≥ s by Proposition 2, and is zero otherwise. So

ad 〈zp〉∗ α(es) =
∞∑

j=s

αj(j − 2s)pj−s.

Now we can just use the linearity of ad 〈zp〉∗ α.

The differential system (4.1) can be thought of as the covector or “momentum” com-
ponent of Hamilton’s equations. Hamilton’s equations are a system of ordinary differential
equations on the cotangent bundle, which depend on a choice of Hamiltonian function. The
form that Hamilton’s equations take in the present setting follows from the general theory
of Hamiltonian systems on Lie groups ([4] chapter 12). We will not discuss the general the-
ory here, but rather we will simply define Hamilton’s equations for our setting and specific
choice of Hamiltonian. The necessary results will be explicitly derived, with the exception of
Pontryagin’s maximum principle (Theorem 3) which is taken from [9].

It should be pointed out that “Hamilton’s equations” is a bit of a misnomer, since we are
not dealing with the classical situation of variational calculus in which we are free to vary
over the entire space of possible paths. However, this minor infraction in terminology is quite
convenient.

We now define the Hamiltonian. By a “control” we mean a time-dependent element
of g, which determines the direction of flow in G. In other words a control is a choice of
infinitesimal parameter in the Loewner equation. In general a Hamiltonian is a function of
the position, vector and control. We are concerned with a specific Hamiltonian:

Definition 4. The complex Hamiltonian H : T ∗G× g → C is the map

H(ξ[w], 〈j〉) = (R[w]∗ξ[w])(〈j〉)

where 〈j〉 is a control. We use the standard identification of T∗[z]G with g∗.
In the trivialization H : G× g∗ × g this has the form

H([w], α, 〈j〉) = α(〈j〉).

Finally we let HR = ReH, so that

HR([w], αR, 〈j〉) = αR(〈j〉) = Reα(〈j〉).

For this choice of Hamiltonian, Hamilton’s equations take the following form.
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Definition 5. Hamilton’s equations for the Hamiltonian in Definition 4 are as follows.

d

dt
[wt] = 〈jt〉 [wt] (4.2)

dαt

dt
= −ad 〈jt〉∗ αt. (4.3)

Remark 8. Strictly speaking Hamilton’s equations are given by taking the real part of the
second set of equations; but by using the identification described at the end of Section 2.3
and the fact that the almost complex structure J commutes with left and right multiplication
we can write them in the form above.

Remark 9 (Finiteness assumption). In the applications to follow, all but finitely many
of the coefficients αs = α(es) are zero, so this differential system is finite. This will always
be assumed unless otherwise specified.

The position component of Hamilton’s equations is just the Loewner equation. Given a
solution to the Loewner equation, it is easy to find a solution to the “covector” component
of Hamilton’s equations. This is the content of the next theorem.

Theorem 1. Assume that
d

dt
[φt] = 〈jt〉 [φt]

for 〈jt〉 measurable in t, for almost all t ∈ [0, T ]. The unique solution of

dαt

dt
= −ad 〈jt〉∗ αt

with endpoint αT is
αt = Ad[φ−1

t ]∗Ad[φT ]∗αT .

Proof. αt clearly satisfies the final condition. By Proposition 8 it satisfies the differential
equation. Note that this is a finite system of ordinary differential equations by Remark 9.
Uniqueness follows from the standard theory of ordinary differential equations.

Remark 10. This solution of Hamilton’s equations appears in [9], in a different form. This
will be made explicit in Section 4.3.

4.2 Quadratic differentials and the coadjoint map

We now show that the flow of a quadratic differential under the Loewner equation is governed
by the coadjoint map.

Let SM denote the class of univalent functions from the disc into DM = {z : |z| < M}
satisfying the normalization F (0) = 0 and F ′(0) = 1. The full class S of normalized univalent
functions on D will be represented by the case M = ∞.

Let ζ−2PM (ζ)dζ2 be a quadratic differential on DM which satisfies PM (ζ) ≥ 0 for ζ ∈ ∂D.
A trajectory of ζ−2PM (ζ)dζ2 is a curve γ(t) such that γ−2PM (γ)γ̇2 ≤ 0, where γ̇ denotes
the derivative of γ in t. A map F : D → C is said to be admissible for ζ−2PM (ζ)dζ2 if it
maps onto DM minus a union of trajectories of ζ−2PM (ζ)dζ2. In particular, DM\F (D) has
measure zero.

We now define the Loewner system for a quadratic differential which arises from combining
the Schiffer and Loewner equations ([9] equation (22), [10] p 135, [11]).
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Definition 6 (Loewner system for a quadratic differential). Let ζ−2PM (ζ)dζ2 be a
quadratic differential on DM which satisfies PM (ζ) ≥ 0 for ζ ∈ ∂DM . Let F ∈ SM be admis-
sible for this quadratic differential, and Ft be a Loewner chain satisfying the normalization
F ′

t(0) = et and Ft(0) = 0 such that F0 = F and FT (z) = Mz for T = log M . Let wt : D→ D
be the transition functions wt(z) = F−1

t ◦ F , which satisfy the Loewner equation

d

dt
[wt] = −〈zpt〉 [wt]

for pt ∈ P measurable in t, for almost all t ∈ [0, T ].
We then define a one-parameter flow of quadratic differentials ζ−2Qt(ζ)dζ2 as follows:

Qt(ζ)
ζ2

dζ2 =
PM (Ft(ζ))

Ft(ζ)2
F ′

t(ζ)2dζ2.

In the case that M = ∞ we replace DM with C and ζ−2P∞(ζ)dζ2 is a quadratic differential
on C.

This immediately implies the identity

Qt(wt(ζ))
wt(ζ)2

w′t(z)2dζ2 =
Q0(ζ)

ζ2
dζ2. (4.4)

We then have the following theorem.

Theorem 2. Consider the Loewner system of Definition 6 for M ∈ [1,∞]. Let Qt have the
expansion

Qt(ζ) =
∞∑

s=−∞
ds(t)ζ−s

and pt(z) = 1 + p1z + p2z
2 + · · · . Then, forming the covector

d =
∞∑

s=1

dse∗s

we have
dd
dt

= −ad 〈zpt〉∗ d.

Proof. The identity (4.4) implies that

∂Qt

∂t
(ζ) = ζpt(ζ)

∂Qt

∂ζ
(ζ) + 2ζp′t(ζ)Qt(ζ).

A computation shows that this identity implies that ds satisfies the differential system 4.1
for s ≥ 1 ([9] Lemma 4.4, [10] p 135, both in slightly different notation). Thus the theorem
follows from Proposition 9.

Remark 11. This theorem can be shown to hold without the finiteness assumption of Remark
9, although care needs to be taken in the interpretation of the expression ad 〈zp〉∗ α.

Remark 12 (On d0(t)). The s = 0 coefficient of the quadratic differential does not satisfy
the differential system 4.1. The particular value of this coefficient is related to the maximal
Hamiltonian condition of Pontryagin’s maximum principle [9]. Since the expressions for
das/dt in Proposition 9 do not involve a0, this does not affect the validity of Theorem 2.
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Remark 13. It will be convenient to write the Loewner system Definition 6 in terms of the
maps vt = etwt as in [8]. In this case it is easily checked that vt satisfies the Loewner equation

d

dt
[vt] = 〈j(pt)〉 [vt] (4.5)

with 〈j(pt)〉 =
〈
z(1− pt(e−tz))

〉
. The quadratic differential also takes another form. Let

ξ = etζ and Q̂t(ξ) = Qt(ζ); i.e. ξ−2Q̂(ξ)dξ2 is a quadratic differential on Det
. This implies

that ξ−2Q̂t(ξ)dξ2 = ζ−2Qt(ζ)dζ2. The identity 4.4 is then equivalent to

Q̂t(vt(ζ))
vt(ζ)2

v′t(ζ)2dζ2 =
Q̂0(ζ)

ζ2
dζ2.

Since vt = etwt, Q̂0 = Q0. This system also has the advantage that PM = Q̂T . The
coefficients of Q̂ are given by

Q̂t(ξ) =
∞∑

s=−∞
cs(t)ξ−s,

where cs(t) = ds(t)e−st. We then have, forming the covector

c =
∞∑

s=1

cse∗s

that
dc
dt

= −ad 〈jt〉∗ c.

This follows easily by simply observing that the coefficients of j(pt) are e−stps(t) for s ≥ 1.
Alternately one can repeat the proof of Theorem 2.

Remark 14. Note that Theorem 2 has nothing to do with a particular functional. If one
does specify a functional, and PM is determined by Schiffer’s equation, this imposes endpoint
conditions for the differential system 4.1, as will be seen in the next section.

4.3 Roth’s dual system and Pontryagin’s maximum principle

As mentioned in the introduction, both the differential system (4.1) and the power matrix
have been known for quite some time, so Theorem 2 could have been observed long ago.
However, a crucial insight was missing, which was provided in Roth [9]. In the course of
demonstrating the equivalence of Pontryagin’s maximum principle and Schiffer’s equation in
the context of the Loewner flow, a natural dual system was constructed, and it was shown
that the coefficients of the quadratic differential and the coefficients of this dual system both
satisfy (4.1). Thus, the coefficients of the quadratic differential can be identified with a
covector, and with the Hamiltonian of Definition 4.

After this identification is made, and the formalism of the cotangent bundle to the power
matrix group is developed, the role of the coadjoint map is easily recognized. In this section
we will explain this last fact and along the way observe a few more identities.

Remark 15 (On terminology). There is a potentially confusing point of terminology:
the term “adjoint” has (at least) two different meanings. First, it can refer to the action
by conjugation on the group and Lie algebra as in Section 4.1. Second, the terms “adjoint
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vector” or “adjoint equation/system” can refer to dual vectors and the differential equation
they satisfy, as in [9].

In order to avoid potential confusion, from here on “adjoint” will have only the first mean-
ing, and we will use the term “dual system” and “dual vector” or “covector” in connection
with the second meaning.

We begin by restating Roth’s version of Pontryagin’s maximum principle in terms of the
power matrix. We will restrict our attention to coefficient functionals of finite order, say ReΦ
where Φ has complex derivative Λ[f ] (Λ[f ; ·] in the notation of Pommerenke [7]). Pontryagin’s
maximum principle can be roughly thought of as Hamilton’s equations with a final condition
(the ‘tranversality condition’) along with a maximality condition for the Hamiltonian.

Note that Roth’s theorem is more general than the statement below, as we are restricting
to finite functionals.

Theorem 3 (Pontryagin’s maximum principle for SM (Roth)). Let F ∈ SM be ex-
tremal for a finite coefficient functional ReΦ, i.e.

max
f∈SM

ReΦ(f) = ReΦ(F ),

and Λ be the complex derivative of Φ. Let Ft be a Loewner chain with transition functions
wt = F−1

t ◦ F and infinitesimal generator pt ∈ P such that eT wT (z) = F (z), w0(z) = z,
w′t(0) = et and wt(0) = 0 for all t ∈ [0, T ] where T = log M . Denote vt = etwt. Let αt ∈ g∗

be the solution of Hamilton’s equations

d

dt
[vt] = 〈j(pt)〉 [vt]

dαt

dt
= −ad 〈j(pt)〉∗ αt

satisfying the transversality condition

αT = −R[vT ]∗dΦ[vT ].

Define the control function 〈j(h)〉 =
〈
z(1− h(e−tz))

〉
for h ∈ P. Then for H as in

Definition 4, we have

max
h∈P

ReH ([vt], αt,−〈j(h)〉) = ReH ([vt], αt,−〈j(pt)〉) .

Proof. This is nothing more than Theorem 4.1 of [9] in different notation, so we need only
make some translations. By Proposition 9, the unique solution of Hamilton’s equations and
the transversality condition is

αt = −Ad[v−1
t ]∗Ad[vT ]∗R[vT ]∗dΦ[vT ]

= −Ad[v−1
t ]∗L[F ]∗dΦ[F ].

Since dΦ = Λ we then have for 〈j〉 ∈ g,

H ([vt], αt,−〈j〉) = −Ad[v−1
t ]∗L[F ]∗Λ[F ](−〈j〉)

= Λ[F ]

(
[F ][v−1

t ] 〈j〉 [vt]
)
.

Again applying Proposition 5 with g = F ◦ v−1
t , j(z) = z(1 − h(e−tz)) and f(z) = vt(z) we

have

H ([vt], αt,−〈j〉) = Λ
[
F ;

F ′(z)
v′t(z)

vt(z)(1− h(e−tvt(z)))
]

,

which is just expression (12) of [9] Theorem 4.1.

17



Application of control theory requires the construction of a dual system to Loewner’s
equation. In Roth’s dual system the covector is the linear functional given by

〈j〉 [vt] 7→ Λ[F ]

[
F ′(z)
v′t(z)

j ◦ vt

]
(4.6)

for 〈j〉 [vt] ∈ T[vt]G (cf [9] p 404 and the proof of Theorem 4.1). This should be regarded
as an element of T∗[vt]

G. We use the trivialization by right multiplication T∗G ∼= G × g∗ in
order to give this covector a simple form. Applying Proposition 5 with g = Ft = F ◦ v−1

t ,
j = j and f = vt we have that

[
F ′

v′t
j ◦ vt

]1

n

=
[
[F ][vt]−1 〈j〉 [vt]

]1

n
.

Thus applying the covector to a vector 〈j〉 [vt] ∈ T[vt]G, we get

Λ[F ]

[
F ′

v′t
j ◦ vt

]
= Λ[F ]

[
[F ][vt]−1 〈j〉 [vt]

]
(4.7)

= Λ[F ]

[
L[F ]∗Ad[vt]−1

∗ 〈j〉]

= Ad[vt]−1∗L[F ]∗Λ[F ] [〈j〉]
= Ad[vt]−1∗Ad[vT ]∗R[F ]∗Λ[F ] [〈j〉]

Setting
αT = −R[F ]∗Λ[F ] ∈ g (4.8)

and
αt = Ad[vt]−1∗Ad[vT ]∗αT (4.9)

we see by Theorem 1 that αt is a solution of the differential equation dα/dt = −ad 〈j〉∗ α.
Thus we see that the solution to Hamilton’s equations given in Theorem 1 is exactly the left
hand side of (4.7). This is Roth’s expression for the solution to the differential system (4.1).

The coefficients of the covector for s ≥ 1 are given by

cs(t) = −αt(es) = −Ad[vt]−1Ad[vT ]∗αT (es).

In Roth’s notation, since es =
〈
zs+1

〉
and

[
F ′

v′t
vs+1
t

]1

n

=
[
[F ][vt]−1

〈
zs+1

〉
[vt]

]1

n
,

we have

cs(t) = Λ[F ]

[
F ′

v′t
vs+1
t

]
. (4.10)

and the functions cs(t) satisfy the differential system (4.1) with final condition cs(T ) =
Λ[F ][F s+1]. Conversely, if the functions cs(t) satisfies the differential system (4.1) for s ≥ 1
with this final condition, they must be given by αt = Ad[vt]−1∗Ad[vT ]∗αT with αT (es) =
−Λ[F ][F s+1] = −cs(T ).
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We now examine the values of the covector at the endpoints t = 0 and t = T . Note that the
coefficients of the positive and negative powers of ξ in Q̂t are related by c−s(t) = cs(t)e−2st,
since Q̂t ≥ 0 on ∂Det

. We have that, for s ≥ 1,

cs(0) = Ad[v0]−1∗Ad[vT ]∗αT (es) (4.11)
= L[F ]∗Λ[F ](es)

= Λ[F ]([F ]
〈
zs+1

〉
)

= Λ[F ](z
s+1F ′(z))

where in the last step we have used Proposition 4 with m = 1, j(z) = zs+1 and g = F .
Similarly we have for s ≥ 1

cs(T ) = Ad[vT ]−1∗Ad[vT ]∗αT (es) (4.12)
= R[F ]∗Λ[F ](es)

= Λ[F ](
〈
zs+1

〉
[F ])

= Λ[F ](F (z)s+1)

where we have used Proposition 3 with m = 1, j(z) = zs+1 and f = F . Of course both
expressions agree with the left hand side of (4.7) with j(z) = zs+1.

The values of the covector at the endpoints of the curve are the coefficients of the quadratic
differential appearing in Schiffer’s equation (with the exception of the zeroth coefficient; see
Remark 12). We demonstrate this in the most familiar case M = ∞. (The general case
can be seen by using a version of Schiffer’s theorem for SM given in [9] Theorem 4.7 and
performing the same computations as below. One needs to take care with the notation: “P”
in Theorem 4.7 [9] is denoted “QT ” in the present paper).

Consider then the case M = ∞, i.e. the full class S. We have that the P and Q appearing
in Schiffer’s equation (P∞ and Q0 in the notation here) satisfy

P∞(F (ζ))
F (ζ)2

F ′(ζ)2dζ2 =
Q0(ζ)

ζ2
dζ2

where P∞ and Q0 are given by

P∞(w) = Λ[F ]

[
F (z)2

w − F (z)

]

and

Q0(ζ) =
1
2
Λ[F ]

[
zF ′(z)

ζ + z

ζ − z

]
+

1
2
Λ[F ]

[
zF ′(z)

1 + ζ̄z

1− ζ̄z

]
− ReΛ[F ] [F (z)] .

Expanding these in a power series in w and ζ we get the expressions (4.11) and (4.12) above.

5 Application: integrals of motion of Hamilton’s equations

5.1 Definition and interpretation

It is interesting that the solution of Hamilton’s equations given by Theorem 1 are independent
of the control, and can be written entirely in terms of the point [vt] ∈ G (or [wt] depending on
the choice of control system) and the terminal covector. (Of course, the curve itself depends
on the control). It is therefore easy to determine integrals of motion of Hamilton’s equation
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from this solution. That is, there are certain expressions in the coefficients of αt which are
independent of t, depending only on the endpoint. The conserved quantity is easily written
in terms of the adjoint map: since αt = Ad[v−1

t ]∗Ad[vT ]∗αT , the quantity

Ad[vt]∗αt = Ad[vT ]∗αT

is constant. Thus we have the following theorem. (Note that the upper index αs denotes the
component of α and the lower index αt denotes dependence of α on t.)

Theorem 4. Let [φt] and αt satisfy Hamilton’s equations

d

dt
[φt] = 〈jt〉 [φt]

dαt

dt
= −ad 〈jt〉∗ αt

on some interval [0, T ] where T can be ∞, and such that for some integer n > 1 α(es) = 0
for s ≥ n. Then setting αs(t) = α(es) we have

Im = −
n−1∑

s=0

αs(t)e∗s(Ad[φt]∗em)

are independent of t.

Proof. On any interval [0, T ′], αt is given by αt = Ad[φ−1
t ]∗Ad[φ′T ]∗αT ′ by Theorem 1. Thus

Ad[φt]∗αt is constant. In particular Im = −Ad[φt]∗αt (em) is constant for each m, which is
the expression above.

Remark 16. Note that e∗s (Ad[φt]∗em) = 0 for s < m; thus the integrals Im depend only on
those αs(t) with s ≥ m.

In particular, we have the following Corollary.

Corollary 1. If [wt] and Qt are as in Definition 6, and [vt] and Q̂t as in Remark 13, then
the quantities

Im =
n−1∑

s=1

ds(t)e∗s (Ad[wt]∗em)

are constant in t. In terms of [vt] and Q̂t as in Remark 13, the quantities above have the
alternate expression

Im =
n−1∑

s=1

cs(t)e∗s (Ad[vt]∗em)

are independent of t.

Proof. The fact that either expression for Im is conserved follows from Theorems 2 and 4, and
Remark 13. (The value of the zeroth coefficient does not enter into the expressions for m ≥ 1
by Remark 16). That the two expressions are equal is just a matter of shuffling some factors
of e−st: it’s not hard to check that Ad[vt]∗es = Ad[etz]∗Ad[wt]∗es and Ad[etz]∗es = e−stes,
so e∗s(Ad[vt]∗em) = e−ste∗s(Ad[wt]∗em); then just observe that ds(t) = cs(t)e−st.
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Remark 17. If PM is determined from the complex derivative Λ of a functional by Schiffer’s
equation, then the constants Im are determined by

Im = L[F ]∗Λ[F ][em] = Λ[F ][z
s+1F ′(z)]

by the discussion following Theorem 3.

Remark 18. These invariants have two remarkable properties. First, they do not explicitly
depend on the infinitesimal generator in the Loewner equation. Second, they are independent
of the particular functional in question; thus if PM is determined by Schiffer’s equation from
some functional, the expressions above are constant no matter what that original functional
was. The particular functional only determines n and the constant values of Im.

5.2 Explicit expressions for the integral invariants

We provide a table of the quantities e∗s(Ad[vt]∗em), which can be computed from the entries
of the upper triangular matrix Ad[vt]∗em. (Note that the quantities are simplified by the
assumption that a1 = 1, but the general case poses no additional difficulty).

m = 0

e∗0(Ad[vt]∗e0) = 1
e∗1(Ad[vt]∗e0) = a2

e∗2(Ad[vt]∗e0) = 2a3 − 2a2
2

e∗3(Ad[vt]∗e0) = 3a4 − 8a3a2 + 5a3
2

e∗4(Ad[vt]∗e0) = 4a5 − 14a4a2 − 6a2
3 + 30a3a

2
2 − 14a4

2

e∗5(Ad[vt]∗e0) = 5a6 − 22a5a2 − 18a4a3 + 56a4a
2
2 + 49a2

3a2 − 112a3a
2
2 + 42a5

2

m = 1

e∗1(Ad[vt]∗e1) = 1
e∗2(Ad[vt]∗e1) = 0
e∗3(Ad[vt]∗e1) = a3 − a2

2

e∗4(Ad[vt]∗e1) = 2a4 − 6a3a2 + 4a3
2

e∗5(Ad[vt]∗e1) = 3a5 − 12a4a2 − 5a2
3 + 28a3a

2
2 − 14a4

2

m = 2

e∗2(Ad[vt]∗e2) = 1
e∗3(Ad[vt]∗e2) = −a2

e∗4(Ad[vt]∗e2) = a2
2

e∗5(Ad[vt]∗e2) = a4 − 2a3a2

m = 3

e∗3(Ad[vt]∗e3) = 1
e∗4(Ad[vt]∗e3) = −2a2

e∗5(Ad[vt]∗e3) = −a3 + 4a2
2
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m = 4

e∗4(Ad[vt]∗e4) = 1
e∗5(Ad[vt]∗e4) = −3a2

m = 5

e∗5(Ad[vt]∗e5) = 1

Thus we have the following.

Corollary 2. Let [wt] and Qt be as in Definition 6, with wt = et(z + a2z
2 + · · · ) and

Qt =
5∑

s=−5

cs(t)e−stζ−s.

Then the following quantities are independent of t.

I1 = c1 + (a3 − a2
2)c3 + (2a4 − 6a3a2 + 4a3

2)c4 + (3a5 − 12a4a2 − 5a2
3 + 28a3a

2
2 − 14a4

2)c5

I2 = c2 − a2c3 + a2
2c4 + (a4 − 2a3a2)c5

I3 = c3 − 2a2c4 + (−a3 + 4a2
2)c5

I4 = c4 − 3a2c5

I5 = c5

Proof. This follows immediately from Corollary 1 and the computations above.

Remark 19. The finiteness of the sums above follows from the assumption that the coef-
ficients of Qt are zero for s ≥ 6. This is the case if Qt is generated by PM from Schiffer’s
equation for a coefficient functional of degree six or less.

If the functional is of lower degree, then one recovers the invariants by setting some of
the cs to zero in the above expressions. For example, for a functional involving coefficients
up to a3, we have cs(t) = 0 for s > 2, so the integrals of motion are (suppressing dependence
on t)

I1 = c1

I2 = c2

Thus c1 and c2 are constants for a third order functional. This special case appears in the
literature in different guises (see [8] Section III.1.4 for a discussion).

If the functional is of higher finite degree it is always possible to compute the Im by the
procedure above; moreover, the first terms of the invariants obtained will be the same as
those given above.

6 Notation key

• G the group of matrix representations of functions holomorphic and univalent in a
neighbourhood of 0

• g the Lie algebra of G
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• [F ] matrix element of G corresponding to the function F

• [F ]mn the entry of [F ] in the mth row and nth column

• 〈h〉 matrix element of g corresponding to the function h

• 〈h〉mn the entry of 〈h〉 in the mth row and nth column

• T[g]G tangent space to G at [g]

• T∗[g]G cotangent space to G at [g]

• L[F ]∗ : T[g]G → T[F ][g]G derivative of left multiplication map; in a matrix group, this
is also given by left multiplication

• L[F ]∗ : T[g]G → T[F ]−1[g]G given as follows: for α ∈ T[g]G, and v ∈ T[F ]−1[g]G,
(L[F ]∗α)(v) ≡ α(L[F ]∗v)

• R[F ]∗ : T[g]G → T[g][F ]G derivative of the right multiplication map, also given by right
multiplication in a matrix group

• Ad[F ] : G → G given by [g] 7→ [F ][g][F−1]

• Ad[F ]∗ : g → g is the derivative of the previous mapping at the identity; given by
〈zh〉 7→ [F ] 〈zh〉 [F−1]

• [, ] is the Lie bracket, given by [〈zh〉 , 〈zp〉] = 〈zh〉 〈zp〉 − 〈zp〉 〈zh〉
• ad 〈zh〉 : g → g is given by ad 〈zh〉 (〈zp〉) = [〈zh〉 , 〈zp〉]
• ad 〈zh〉∗ : g∗ → g∗ defined by (ad 〈zh〉∗ α)(〈zp〉) = α(ad 〈zh〉 (zp)) for all 〈zp〉 ∈ g
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