A functional-analytic proof of the conformal welding theorem

Eric Schippers\(^1\) Wolfgang Staubach\(^2\)

\(^1\)Department of Mathematics
University of Manitoba
Winnipeg, Canada

\(^2\)Department of Mathematics
Uppsala Universitet
Uppsala, Sweden

CMS Winter Meeting 2012
Conformal welding theorem

Definition

A quasiconformal map \(\phi : A \to B \) between open connected domains \(A \) and \(B \) in \(\mathbb{C} \) is a homeomorphism such that

1. \(\phi \) is absolutely continuous on almost every vertical and horizontal line in every closed rectangle \([a, b] \times [c, d] \subseteq A\)

2. \(\left\| \frac{\partial f}{\partial x} \right\|_{\infty} \leq k \)

for some fixed \(k < 1 \).
Conformal welding theorem

Definition

A quasiconformal map \(\phi : A \to B \) between open connected domains \(A \) and \(B \) in \(\mathbb{C} \) is a homeomorphism such that

1. \(\phi \) is absolutely continuous on almost every vertical and horizontal line in every closed rectangle \([a, b] \times [c, d] \subseteq A\)

2. \[
\left\| \frac{\partial f}{\partial f} \right\|_\infty \leq k
\]

for some fixed \(k < 1 \).

Definition

A quasisymmetric map \(\phi : S^1 \to S^1 \) is a homeomorphism which is the boundary values of some quasiconformal map \(H : \mathbb{D} \to \mathbb{D} \).
Conformal welding theorem

Theorem (Conformal welding theorem)

Let $\phi : S^1 \rightarrow S^1$ be a quasisymmetric map and let $\alpha > 0$. There is a pair of maps $f : \mathbb{D} \rightarrow \mathbb{C}$ and $g : \mathbb{D}^* \rightarrow \overline{\mathbb{C}}$ such that

1. f is one-to-one and holomorphic, and has a quasiconformal extension to $\overline{\mathbb{C}}$
2. g is one-to-one and holomorphic except for a simple pole at ∞, and has a quasiconformal extension to $\overline{\mathbb{C}}$
3. $f(0) = 0$, $g(\infty) = \infty$ and $g'(\infty) = \alpha$.
4. $\phi = g^{-1} \circ f$ on S^1.
Conformal welding theorem

Theorem (Conformal welding theorem)

Let $\phi : S^1 \to S^1$ be a quasisymmetric map and let $\alpha > 0$. There is a pair of maps $f : \mathbb{D} \to \mathbb{C}$ and $g : \mathbb{D}^* \to \overline{\mathbb{C}}$ such that

1. f is one-to-one and holomorphic, and has a quasiconformal extension to $\overline{\mathbb{C}}$
2. g is one-to-one and holomorphic except for a simple pole at ∞, and has a quasiconformal extension to $\overline{\mathbb{C}}$
3. $f(0) = 0$, $g(\infty) = \infty$ and $g'(\infty) = \alpha$.
4. $\phi = g^{-1} \circ f$ on S^1.

- standard proof uses existence and uniqueness to solutions of the Beltrami equation.
- We will give another proof using symplectic geometry and Grunsky inequalities.
The function spaces \mathcal{H} and \mathcal{H}_*

Let \mathcal{H} denote the space of L^2 functions h on S^1 such that

$$\sum_{n=-\infty}^{\infty} |n| |\hat{h}(n)|^2 < \infty.$$

Define

$$\|h\|^2 = |\hat{h}(0)|^2 + \sum_{n=-\infty}^{\infty} |n| |\hat{h}(n)|^2.$$
The function spaces \mathcal{H} and \mathcal{H}_*

Let \mathcal{H} denote the space of L^2 functions h on S^1 such that

$$\sum_{n=-\infty}^{\infty} |n| |\hat{h}(n)|^2 < \infty.$$

Define

$$\|h\|^2 = |\hat{h}(0)|^2 + \sum_{n=-\infty}^{\infty} |n| |\hat{h}(n)|^2.$$

We will also consider

$$\mathcal{H}_* = \{ h \in \mathcal{H} : \hat{h}(0) = 0 \}$$

with norm

$$\|h\|_*^2 = \sum_{n=-\infty}^{\infty} |n| |\hat{h}(n)|^2.$$
Decomposition of \mathcal{H}_*

\[\mathcal{H}_+ = \{ h \in \mathcal{H}_* : h = \sum_{n=1}^{\infty} h_n e^{i n \theta} \} \]

\[\mathcal{H}_- = \{ h \in \mathcal{H}_* : h = \sum_{n=-\infty}^{-1} h_n e^{i n \theta} \}. \]
Decomposition of H_*

$$H_+ = \{ h \in H_* : h = \sum_{n=1}^{\infty} h_n e^{in\theta} \}$$

$$H_- = \{ h \in H_* : h = \sum_{n=-\infty}^{-1} h_n e^{in\theta} \}.$$

It is well-known that we have the following isometries

$$H_+ \cong D(D) = \{ h : D \to \mathbb{C} : \int\int_{D} |h'|^2 \, dA < \infty \, \, h(0) = 0 \}$$

$$H_- \cong D(D^*) = \{ h : D^* \to \mathbb{C} : \int\int_{D^*} |h'|^2 \, dA < \infty \, \, h(\infty) = 0 \}$$

Summarized in Nag and Sullivan.
Composition operators on H and H^*

We consider two composition operators

$$C_\phi : H \to H \quad C_\phi h = h \circ \phi$$

$$\hat{C}_\phi : H^* \to H^* \quad \hat{C}_\phi h = h \circ \phi - \frac{1}{2\pi} \int_{S^1} h \circ \phi(e^{i\theta}) \, d\theta.$$
The function spaces and composition operator

Composition operators on H and H_*

We consider two composition operators

$$C_\phi : H \to H \quad C_\phi h = h \circ \phi$$

$$\hat{C}_\phi : H_* \to H_* \quad C_\phi h = h \circ \phi - \frac{1}{2\pi} \int_{S^1} h \circ \phi(e^{i\theta}) \, d\theta.$$

Theorem (Nag and Sullivan, quoting notes of Zinsmeister)

\hat{C}_ϕ is bounded if ϕ is a quasisymmetry.

Theorem (S and Staubach)

If ϕ is a quasisymmetry then C_ϕ is bounded.
Sketch of a new proof

Treat ϕ as a composition operator C_ϕ on \mathcal{H}: we want to solve for unknown functions f and g in equation $f \circ \phi^{-1} = g, g_{-1} = \alpha$.

Using the decomposition $\mathcal{H} = [\mathcal{H} +] \oplus [\mathcal{C} \oplus \mathcal{H} -]$, the welding equation can be written $C_\phi f = (M^{++} + M^{+} - M^{--} - M^{-}) f_0 = (g^+ + g^-)$ so $M^{++} f = g^+$ and $M^{+-} f = g^-$.

where $g^+ = g_{-1} z = \alpha z$ and $g^- = g_0 + g_1 / z + g_2 / z^2 + \cdots$.

which leads to the solution $f = M_{-1}^{+-} g^+ + g^- = M_{-1}^{-+} f$.

Eric Schippers (Manitoba)
Sketch of a new proof

Treat ϕ as a composition operator C_ϕ on \mathcal{H}: we want to solve for unknown functions f and g in equation $f \circ \phi^{-1} = g, g_{-1} = \alpha$.

Using the decomposition $\mathcal{H} = [\mathcal{H}_+] \oplus [\mathbb{C} \oplus \mathcal{H}_-]$, the welding equation can be written

$$C_\phi f = \begin{pmatrix} M_{++} & M_{+-} \\ M_{-+} & M_{--} \end{pmatrix} \begin{pmatrix} f \\ 0 \end{pmatrix} = \begin{pmatrix} g_+ \\ g_- \end{pmatrix}$$

so

$$M_{++} + g_+ = g_{++} = g_{-1} = \alpha$$

and

$$M_{-+} + g_- = g_{-+} = g_{0} + g_1/z + g_2/z^2 + \cdots.$$
Sketch of a new proof

Treat ϕ as a composition operator C_ϕ on \mathcal{H}: we want to solve for unknown functions f and g in equation $f \circ \phi^{-1} = g$, $g_{-1} = \alpha$.

Using the decomposition $\mathcal{H} = [\mathcal{H}_+] \oplus [\mathbb{C} \oplus \mathcal{H}_-]$, the welding equation can be written

$$C_\phi f = \begin{pmatrix} M_{++} & M_{+-} \\ M_{-+} & M_{--} \end{pmatrix} \begin{pmatrix} f \\ 0 \end{pmatrix} = \begin{pmatrix} g_+ \\ g_- \end{pmatrix}$$

so

$$M_{++}f = g_+ \quad \text{and} \quad M_{+-}f = g_-.$$

where $g_+ = g_{-1} z = \alpha z$ and $g_- = g_0 + g_1/z + g_2/z^2 + \cdots$.
Sketch of a new proof

Treat ϕ as a composition operator C_ϕ on \mathcal{H}: we want to solve for unknown functions f and g in equation $f \circ \phi^{-1} = g$, $g_{-1} = \alpha$.

Using the decomposition $\mathcal{H} = [\mathcal{H}_+] \oplus [\mathbb{C} \oplus \mathcal{H}_-]$, the welding equation can be written

$$C_\phi f = \begin{pmatrix} M_{++} & M_{+-} \\ M_{-+} & M_{--} \end{pmatrix} \begin{pmatrix} f \\ 0 \end{pmatrix} = \begin{pmatrix} g_+ \\ g_- \end{pmatrix}$$

so

$$M_{++} f = g_+ \quad \text{and} \quad M_{+-} f = g_-.$$

where $g_+ = g_{-1} z = \alpha z$ and $g_- = g_0 + g_1/z + g_2/z^2 + \cdots$.

which leads to the solution

$$f = M_{++}^{-1} g_+ \quad g_- = M_{+-} f.$$
What are the gaps?

We need to show that

- M_{++} is invertible: will use symplectic geometry and results of Nag and Sullivan, Takhtajan and Teo.
- The solutions in \mathcal{H} so obtained have the desired properties: conformal with quasiconformal extensions: will use Grunsky inequalities.
What are the gaps?

We need to show that

- M_{++} is invertible: will use symplectic geometry and results of Nag and Sullivan, Takhtajan and Teo.
- The solutions in \mathcal{H} so obtained have the desired properties: conformal with quasiconformal extensions: will use Grunsky inequalities.

Here we go!
Symplectic structure on \mathcal{H}_*

For $f, g \in \mathcal{H}_*$ let

$$\omega(f, g) = -i \sum_{n=-\infty}^{\infty} f_n g_{-n}.$$

If one restricts to the real subspace (such that $\hat{f}(-n) = \overline{\hat{f}(n)}$) this is a non-degenerate anti-symmetric form $2\text{Im} \left(\sum_{n=1}^{\infty} \hat{f}(n) \hat{g}(n) \right)$.
The proof
Symplectic geometry of \mathcal{H}_*

Symplectic structure on \mathcal{H}_*

For $f, g \in \mathcal{H}_*$ let

$$\omega(f, g) = -i \sum_{n=-\infty}^{\infty} f_n g_{-n}.$$

If one restricts to the real subspace (such that $\hat{f}(-n) = \hat{f}(n)$) this is a non-degenerate anti-symmetric form $2\text{Im} \left(\sum_{n=1}^{\infty} \hat{f}(n) \hat{g}(n) \right)$.

Theorem (Nag and Sullivan)

If $\phi : S^1 \to S^1$ is quasisymmetric then \hat{C}_ϕ is a symplectomorphism (that is, $\omega(\hat{C}_\phi f, \hat{C}_\phi g) = \omega(f, g)$).

Note that \hat{C}_ϕ has the form

$$\begin{pmatrix} A & B \\ B & A \end{pmatrix}.$$
The infinite Siegel disc (Nag and Sullivan)

Definition

The infinite Siegel disc \mathcal{S} is the set of maps $Z : \mathcal{H}_- \rightarrow \mathcal{H}_+$ such that $Z^T = Z$ and $I - ZZ^T$ is positive definite.
The infinite Siegel disc (Nag and Sullivan)

Definition
The infinite Siegel disc \mathcal{S} is the set of maps $Z : H_- \rightarrow H_+$ such that $Z^T = Z$ and $I - ZZ^T$ is positive definite.

Context:
- the graph of each Z is a Lagrangian subspaces of H_*
- symplectomorphisms \hat{C}_ϕ act on them.

Definition
Let \mathcal{L} be the set of bounded linear maps of the form

$$(P, Q) : H_- \rightarrow H_*$$

where $P : H_- \rightarrow H_+$ and $Q : H_- \rightarrow H_-$ are bounded operators satisfying $\overline{P}^T P - \overline{Q}^T Q > 0$ and $Q^T P = P^T Q$.
Two facts

• Q invertible $\Rightarrow PQ^{-1} \in \mathcal{G} \iff (P, Q) \in \mathcal{L}$.

• $(P, Q)Q^{-1} = (PQ^{-1}, I)$ has the same image as (P, Q)
Invariance of \mathcal{L}

\mathcal{L} is invariant under bounded symplectomorphisms.

Proposition

If ψ is a bounded symplectomorphism which preserves $\mathcal{H}_{\mathbb{R}^}$ then*

$$\psi \left(\begin{array}{c} P \\ Q \end{array} \right) \in \mathcal{L}.$$
Invertibility

Proposition

If \((P, Q) \in \mathcal{L}\) *then* \(Q\) *has a left inverse.*
Invertibility

Proposition

If \((P, Q) \in \mathcal{L}\) then \(Q\) has a left inverse.

Proof.

If \(Qv = 0\) then by the positive-definiteness of \(Q^TQ - P^TP\)

\[
0 \leq v^T \left(Q^TQ - P^TP \right) v = -v^TP^TPv = -\|Pv\|^2.
\]

Thus \(Pv = 0\). This implies that \(v^T \left(Q^TQ - P^TP \right) v = 0\) so \(v = 0\). Thus \(Q\) is injective, or equivalently \(Q\) has a left inverse.
Invertibility of A

Note that $A = M_{++}$, the matrix we needed to show was invertible.

Theorem (S, Staubach)

Let $\phi : S^1 \to S^1$ be a quasisymmetry, with

$$\hat{C}_{\phi^{-1}} = \begin{pmatrix} A & B \\ B & \bar{A} \end{pmatrix}.$$

*Then A is invertible and $Z = B\bar{A}^{-1} \in \mathcal{G}$.***
Invertibility of A

Note that $A = M_{++}$, the matrix we needed to show was invertible.

Theorem (S, Staubach)

Let $\phi : S^1 \to S^1$ be a quasisymmetry, with

$$\hat{C}_{\phi^{-1}} = \begin{pmatrix} A & B \\ B & \bar{A} \end{pmatrix}.$$

Then A is invertible and $Z = B\bar{A}^{-1} \in \mathcal{S}$.

Note: This theorem was proven originally by Takhtajan and Teo. However their proof uses the conformal welding theorem, so we must provide a new one.
Proof

Proof: Invertibility of A:

\[
\begin{pmatrix} A & B \\ B & A \end{pmatrix} \cdot \begin{pmatrix} 0 \\ I \end{pmatrix} = \begin{pmatrix} B \\ A \end{pmatrix} \in \mathcal{L}.
\]

So \bar{A} has a left inverse.
Proof: Invertibility of A:

\[
\begin{pmatrix}
A & B \\
B & A
\end{pmatrix} \cdot \begin{pmatrix}
0 \\
I
\end{pmatrix} = \begin{pmatrix}
B \\
A
\end{pmatrix} \in \mathcal{L}.
\]

So A has a left inverse.

Apply to ϕ^{-1} (also a quasisymmetry)

\[
\hat{C}_\phi = \begin{pmatrix}
A^T & -B^T \\
-B^T & A^T
\end{pmatrix}.
\]

So A^T has a left inverse; thus A is a bounded bijection so it is invertible.
Let $Z = B \overline{A}^{-1}$.
Proof continued

Let $Z = B\bar{A}^{-1}$.

Recall:

$$(B, \bar{A}) \in \mathcal{L} \Rightarrow B\bar{A}^{-1} \in \mathcal{G}.$$
Definition of Grunsky matrix

Let

\[g(z) = g_{-1}z + g_0 + g_1z + g_2z^2 + \cdots. \]

The Grunsky matrix \(b_{mn} \) of \(g \) is defined by

\[
\log \frac{g(z) - g(w)}{z - w} = \sum_{m,n=1}^{\infty} b_{mn}z^m w^n.
\]
Grunsky matrix and welding maps

Theorem (Takhtajan and Teo)

Let \(f(z) = f_1 z + f_2 z^2 + \cdots \in \mathcal{D}(\mathbb{D}) \) and \(g = g_- z + g_- \) where \(g_- \in \mathcal{D}(\mathbb{D}^*) \), and let \(\phi : \mathbb{S}^1 \rightarrow \mathbb{S}^1 \) be a quasisymmetry. Assume that \(g \circ \phi = f \) on \(\mathbb{S}^1 \). Let

\[
\hat{C}_\phi = \begin{pmatrix} A & B \\ B & A \end{pmatrix} \quad \text{and} \quad \hat{C}_{\phi^{-1}} = \begin{pmatrix} A & B \\ B & A \end{pmatrix} \quad (1)
\]

1. If \(g_- \neq 0 \), then the Grunsky matrix of \(g \) is \(\overline{BA}^{-1} \).
2. If \(f_1 \neq 0 \), then the Grunsky matrix of \(f \) is \(\overline{BA}^{-1} \).
Grunsky matrix and welding maps

Theorem (Takhtajan and Teo)

Let \(f(z) = f_1 z + f_2 z^2 + \cdots \in \mathcal{D}(\mathbb{D}) \) and \(g = g_{-1} z + g_- \) where \(g_- \in \mathcal{D}(\mathbb{D}^*) \), and let \(\phi : S^1 \to S^1 \) be a quasisymmetry. Assume that \(g \circ \phi = f \) on \(S^1 \). Let

\[
\hat{C}_\phi = \begin{pmatrix} A & B \\ \overline{B} & \overline{A} \end{pmatrix} \quad \text{and} \quad \hat{C}_{\phi^{-1}} = \begin{pmatrix} A & B \\ \overline{B} & \overline{A} \end{pmatrix}
\] \hspace{1cm} (1)

1. If \(g_{-1} \neq 0 \), then the Grunsky matrix of \(g \) is \(\overline{B}A^{-1} \).
2. If \(f_1 \neq 0 \), then the Grunsky matrix of \(f \) is \(\overline{B}A^{-1} \).

Note: Their statement assumes that \(f \) and \(g \) are the maps in the conformal welding theorem. However, their proof only uses the assumptions above and invertibility of \(g \).
Recap: proof of conformal welding theorem

Proof:
(1) For a quasisymmetry \(\phi \).

\[
\hat{C}_{\phi^{-1}} = \begin{pmatrix}
A & B \\
\bar{B} & \bar{A}
\end{pmatrix}
\]

A is invertible.
Recap: proof of conformal welding theorem

Proof:

1. For a quasisymmetry ϕ.

 $$\hat{C}_{\phi^{-1}} = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$$

 A is invertible.

2. We may find $f, g \in \mathcal{H}$ such that $f \circ \phi^{-1} = g$ using

 $$C_{\phi^{-1}} f = \begin{pmatrix} M_{++} & M_{+-} \\ M_{-+} & M_{--} \end{pmatrix} \begin{pmatrix} f \\ 0 \end{pmatrix} = \begin{pmatrix} g_+ \\ g_- \end{pmatrix}$$

 where $g_+ = g_- z = \alpha z$ and $g_- = g_0 + g_1/z + g_2/z^2 + \cdots$ which has the solution

 $$f = M_{++}^{-1} g_+ \quad g_- = M_{--} f.$$

 Note that $M_{++} = A$.

Eric Schippers (Manitoba)
Proof continued

(3) BA^{-1} is the Grunsky matrix of g under these assumptions, by the theorem of Takhtajan and Teo.
(3) BA^{-1} is the Grunsky matrix of g under these assumptions, by the theorem of Takhtajan and Teo.

(4) $Z = BA^{-1}$ satsifies $I - ZZ$ is positive definite since $Z \in \mathcal{S}$. Thus $\|Z\| \leq k < 1$ some k.

Proof continued

(3) $B\bar{A}^{-1}$ is the Grunsky matrix of g under these assumptions, by the theorem of Takhtajan and Teo.

(4) $Z = B\bar{A}^{-1}$ satisfies $I - ZZ$ is positive definite since $Z \in \mathbb{S}$. Thus $\|Z\| \leq k < 1$ some k.

(5) By a classical theorem of Pommerenke if $\|Z\| \leq k < 1$ then g is univalent and quasiconformally extendible. A bit of work shows the same for f.
References

