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Abstract. We construct conformally invariant domain functions, using in-
variant derivatives invented by Minda. These domain functions contain infor-
mation about how one domain is embedded in another. Using the Dirichlet
principle and reproducing formulas for the invariant derivatives, inequalities
are derived for the domain functions, in the cases that the outer domain is
equivalent to the disc, to the plane or to the Riemann sphere.

1. Introduction

A general problem in univalent function theory is to describe a set of mappings
from one fixed domain into another - for example, by estimating the derivatives
of different orders. Looking at this problem from an ‘intrinsic’ point of view, one
could try to describe rather the class of image domains inside the target domain. In
this point of view, inequalities are given in terms of intrinsic domain functions such
as Green’s function, the Bergman kernel, or the hyperbolic metric. In the case of
simply connected domains, one can recover inequalities for the mapping function,
since the domain functions have simple relations with the mapping function.

Another way of phrasing this general problem, then, is as follows: 1) identify
quantities that express how one domain sits in another, complex analytically, and
2) identify restrictions on these quantities. In order to make this concrete, consider
the well-known inequality

(1)
∑
µ,ν

αµαν (g1(ζµ, ζν)− g2(ζµ, ζν)) ≥ 0,

where gi are Green’s functions of domains D1 ⊂ D2, αµ are real parameters, and
ζµ ∈ D1. The quantity on the left-hand side contains information on how D1 sits
in D2, and the inequality is a restriction that holds for any such pair of domains (a
consequence of the maximum principle.) Setting D2 to be the unit disc in (1), we
can derive inequalities for a univalent mapping function from the disc onto D1 (for
example the Schwarz lemma.)

There are two requirements for answers to this problem that will be demanded
here. The first requirement is that, since this is after all complex analysis, the
quantities of part 1) of the problem should represent conformal geometry; thus we
demand that the quantities be conformally invariant. (There is a loose analogy here
with the second fundamental form, which expresses how one Riemannian manifold
sits in another.) An example of this kind of conformal invariant is given by the
quantity on the left-hand side of (1).

The second requirement is that the inequalities derived should hold whether the
outer domain is equivalent to the disc, to the complex plane or to the sphere. For
the most part this is accomplished; though in the case of the sphere, an extra
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condition is required on the domain in order to say anything at all. We choose
the condition that the inner domain be ‘elliptically schlicht’. The meaning of this
condition is explained in Section 2.2.

The main results are conformally invariant inequalities, involving Green’s func-
tion and its derivatives for a pair of domains (Theorem 1). These inequalities are
stated and proven in Section 4. The two tools required are the Dirichlet principle,
following a method of Nehari [12], and a generalization of the Cauchy kernel to con-
stant curvature metrics. The generalization follows quite naturally by considering
the dependence of the ‘mean value property’ on the metric.

In Section 3, the notion of conformal invariance is made precise in the context
of the main problem. In order to construct conformal invariants, and formulate the
main theorem, some tools from Riemannian geometry are necessary, namely the
derivatives of Minda [9] and Peschl [15]. These are described in Section 2.

2. Geometric preliminaries

2.1. Invariant derivatives. In order to continue, we need a special kind of dif-
ferentiation, which comes from a compromise between Riemannian and conformal
geometry (see Remark 1 below). This derivative was first defined by Peschl [15] and
later generalized to arbitrary conformal metrics by Minda [9]. These derivatives are
apparently also used in physics (see Nakahara [11] 14.1.)

We now define the covariant derivatives of Minda. The Riemannian metrics
considered will be compatible with the complex structure; i.e. we consider only
metrics that can be represented with a line element ρ(z)|dz|. Let

(2) Γρ = 2
∂

∂z
log ρ

be the Christoffel symbol of ρ|dz|. We define two derivatives ∇ρ and ∇ρ which act
on tensors of the form

g(z)dzn ¯ dz̄m

(where ¯ denotes the symmetric tensor product) via the rule

∇ρg(z)dzn ¯ dz̄m =
(

∂g

∂z
− nΓρg

)
dzn+1 ¯ dz̄m(3)

∇ρg(z)dzn ¯ dz̄m =
(

∂g

∂z̄
−mΓρg

)
dzn ¯ dz̄m+1.

It is easily checked that ∇ρ and ∇ρ satisfy a Leibniz rule with respect to the
multiplication

g1dzn1 ¯ dz̄m1 × g2dzn2 ¯ dz̄m2 7−→ g1g2dzn1+n2 ¯ dz̄m1+m2 .

Remark 1. ∇ and ∇ are related to the ordinary Riemannian connection ∇R.
Without going into the necessary identifications between complex and real objects,
the relation is essentially ∇R = ∇+∇.

For holomorphic functions f , Minda [9] defines derivatives ‘Dn
ρ f ’ inductively by

a rule equivalent to (3); explicitly

∇n
ρf(z) = ρn(z)Dn

ρ f(z)dzn.
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In the particular case that ρ ≡ 1 (i.e. if ρ is the Euclidean metric), Dn
ρ f(z) =

f (n)dzn. For applications involving special cases of ρ, see for instance Ma and
Minda [7], [8].

Remark 2. Minda defines the derivatives in greater generality, to allow for a metric
other than the Euclidean on the image; what we’ve given here is the case that the
image metric is the Euclidean. In the general case the nth derivative is a tensor of
the form

g(z)
∂

∂w
¯ dzn

where w = f(z) (see [16]). (Since ∇(∂/∂w) = 0 in the Euclidean metric, we can
ignore this factor.)

2.2. Elliptically schlicht functions and constant curvature metrics. As
mentioned in the introduction, it is desirable that the inequalities derived should
hold whether the outer domain is equivalent to the disc, to the plane, or to the Rie-
mann sphere. The natural metrics on each of these domains are certain constant
curvature metrics. Here, we define these metrics, which will be used to state the
main inequalities. We also define a special class of domains in the sphere defined
by Grunsky [5] called ‘elliptically schlicht’ domains. See also for instance Kühnau
[6] or Duren and Kühnau [4].

Consider the conformal metric λk(z)2|dz|2, where

λk(z) =

√
|k|

1 + k|z|2 .

This metric is defined on the disc of radius 1/
√
|k| if k < 0, and defined on the

whole sphere if k > 0. Set
λ0(z) = 1

in the case that k = 0. We will often abuse notation and also refer to the function λk

a ‘metric’. This metric has curvature 4, 0, and −4, in the cases that k is positive,
zero, or negative respectively. For k < 0, λk is the unique complete constant
curvature metric on the disc of radius 1/

√
|k| (up to scale). On the sphere, there

are many complete constant positive curvature metrics; λk are the only ones such
that 0 and ∞ are antipodal (up to scale). The isometries of λk are the mappings
of the form

T (z) = eiθ z − a

1 + kāz
.

The points w and −1/kw̄ are antipodal in the metric λk. simply connected
domains that contain no pairs of points w and −1/kw̄ will be called ‘elliptically
k-schlicht’. Univalent mappings onto such domains will also be referred to as
‘elliptically k-schlicht’. Setting k = 1 recovers the standard definition of Grunsky.

If k < 0, the point −1/(kw̄) is the reflection of w in the circle of radius 1/
√
|k|; a

domain not containing any pairs of reflected points must be bounded in the disc of
radius 1/

√
|k| or its complement. Thus we see that the condition of being ‘elliptical

k-schlicht’ is in a sense analogous to the condition of boundedness.
Note that with the parameter k, one can recover the case of the plane: as k → 0+,

the condition of elliptic k-schlichtness becomes the requirement that the domain
not contain ∞; similarly as k → 0−. The parameter k allows one to continuously
interpolate between the hyperbolic, planar, and elliptic cases of inequalities.
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For more discussion of the notion of elliptically schlicht domains and of results
by other authors see [17].

2.3. Domain functions. In this section we define some domain functions for which
inequalities will later be derived.

Let D be a domain in the Riemann sphere possessing a Green’s function g.
Define the Bergman kernel of D to be

(4) K(ζ, η) = − 2
π

∂2g

∂ζ∂η
(ζ, η).

We also have the (apparently nameless) kernel function (Bergman and Schiffer [2])

(5) L(ζ, η) = − 2
π

∂2g

∂ζ∂η
(ζ, η).

We also need versions of these functions on the plane and sphere. On the sphere,
we have a kind of ‘Green’s function’

(6) gk(ζ, η) = − log

∣∣∣∣∣

√
|k|(ζ − η)

(1 + kη̄ζ)

∣∣∣∣∣.

This is the unique harmonic function (up to an additive constant) with opposite
logarithmic singularities at the antipodal points η and −1/kη̄; this ‘Green’s func-
tion’ depends on the choice of constant curvature metric λk (because this choice
determines which points are antipodal.) Note that if we take k to be negative, the
formula above agrees with Green’s function on the disc of radius 1/

√
|k|.

Using this definition of Green’s function, we can also extend the kernels (4) and
(5) to the whole sphere, simply by replacing ‘g’ with ‘gk’. Explicitly,

(7) Kk(ζ, η) = − 1
π

k

(1 + kζ̄η)2

and

(8) Lk(ζ, η) =
1

π(ζ − η)2
.

Again, both definitions agree with the standard ones on the disc of radius 1/
√
|k|

when k < 0. Finally, note that we can extend these definitions to the plane by
setting k = 0.

2.4. Kernels which reproduce a holomorphic function and its invariant
derivatives. In this section we construct kernels which, when integrated against a
holomorphic function around a simple closed curve, reproduce the function. These
kernels depend on the choice of metric λk, and arise naturally from geometric con-
siderations. For negative curvature, on simply connected domains, these geometric
considerations just amount to an interpretation of the function ∂g/∂z in terms of
hyperbolic angle. The reproducing kernels provide an elegant counterpart to the
Cauchy kernel for the more general metrics, and appear naturally in the proof of
the main inequalities in Theorem 1. Pressing the analogy further, we give ker-
nels which reproduce the derivatives of Minda; the result is a generalization of the
Cauchy formula for derivatives.
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The relation between the Cauchy kernel and the mean value property is of course
well-known; if one restricts attention to a Euclidean circle centred at the point a,
then, denoting the infinitesimal angle traced around this circle by dθa, we have

dθa =
1
i

dz

z − a
.

So the reproducing property of the Cauchy kernel is the same as the mean value
property of harmonic functions, at least around a circle centred at the point in
question. Once we recognize that the kernel is holomorphic, it is seen that the
right-hand side functions as a reproducing kernel for holomorphic functions, around
an arbitrary smooth simple closed curve homotopic to the point a.

We now construct the angle element corresponding to the metric λk; from this
it is possible to generalize the Cauchy kernel. Consider a λk-circle γ centred at the
point a, in either the disc of radius 1/

√
|k|, C or C, in the cases that k < 0, k = 0,

and k > 0 respectively. Let

T (z) =
z − a

1 + kāz
.

This is an isometry of the metric λk, so, denoting the angle element around a by
dθk

a ,
dθk

a = T ∗(dθk
0 ).

Since T ◦γ is a Euclidean circle centred at 0, by the radial symmetry of λk, we have
that along T ◦ γ,

dθk
0 =

1
i

dz

z
.

So

dθk
a = T ∗

(
1
i

dz

z

)
=

1
i

T ′(z)
T (z)

dz

=
1
i

1 + k|a|2
(z − a)(1 + kāz)

dz(9)

Note that this is real by construction.
One can then compute, either explicitly or using a change of variables, that for

a λk-circle γ and any function u harmonic on a region containing γ and its interior,

u(a) =
1
2π

∫

γ

u(z)dθk
a .

This is the analogue of the mean value property, for the metrics λk.

Remark 3. The Laplacian depends on the choice of metric. However, in two
dimensions, the Laplacian of a conformal metric ρ(z)|dz| is ρ−2∆ where ∆ is the
standard Laplacian. Thus, the notion of harmonic function does not depend on the
metric and agrees with the classical one.

Since dθk
a is holomorphic, we have that for any smooth simple closed curve γ

homotopic to a, and f holomorphic on a region containing γ and its interior,

(10) f(a) =
1

2πi

∫

γ

1 + k|a|2
(z − a)(1 + kāz)

f(z)dz

(this can of course be computed directly.) In the case that k > 0, it is necessary to
assume that γ does not contain the antipodal point −1/(kā).
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In order to produce derivatives of a holomorphic function, one differentiates un-
der the integral sign in the Cauchy formula, to get the Cauchy formula for deriva-
tives

f (n)(a) =
n!
2πi

∫

γ

f(z)
(z − a)n+1

dz.

To get rather invariant derivatives of a holomorphic function, one differentiates
under the integral sign with the connection ∇. This leads to the following.

Proposition 1. Let ∇ be the connection corresponding to λk on the domain Dk, C,
or C in the case that k < 0, k = 0, and k > 0 respectively. Let γ be a simple closed
smooth curve in the plane, enclosing the point w. Let f be a function holomorphic
on a region containing γ and its interior. In the case k > 0, assume also that γ
does not enclose −1/(kw̄). Then,

∇nf(w) =
n!
2πi

∫

γ

f(z)(1 + kw̄z)n−1

(1 + k|z|2)n−1(z − w)n+1
dz · dwn.

Proof. Differentiate under the integral sign using equation (10) and the rule (3). ¤

Note that setting k = 0 recovers the Cauchy formulas for derivatives.
We can easily compute, that for the Green’s function of the disc of radius 1/

√
|k|

(given by equation (6)),

gk(z, a) = − log

∣∣∣∣∣

√
|k|(z − a)
1 + kāz

∣∣∣∣∣
that

∂gk

∂z
= −1

2
1 + k|a|2

(z − a)(1 + kāz)
so

dθk
a = −2

i

∂gk

∂z
(z, a)dz.

Of course, it is true in general that for a smooth null-homotopic curve containing
a in any domain D possessing a Green’s function g, and f holomorphic in a region
containing γ and its interior,

f(a) = − 1
πi

∫

γ

∂g

∂z
(z, a)f(a)dz,

so (10) is just a reinterpretation of this well-known property of Green’s function in
the simply connected negative curvature case. (It follows from conformal invariance
of both hyperbolic angle and Green’s function that

−2
i

∂g

∂z
dz

is hyperbolic angle on any simply connected domain equivalent to the disc.)
To prove the main theorem, we need a slightly different kernel which reproduces

derivatives of harmonic functions.

Proposition 2. Let D1 ⊂ D2, where D2 is a simply connected domain. Let ∇
be the connection corresponding to the hyperbolic metric, Euclidean metric, or λk,
k > 0 on D2, in the cases that D2 is equivalent to the disc, plane, and sphere
respectively. Let g1 be Green’s function of D1. If D2 = C, we assume further that
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D1 is elliptically k-schlicht. Then, for all functions h which are harmonic on D1

and extend continuously to the boundary, for any ζ0 ∈ D1,

− 1
πi

∫

∂D1

∇n

η

∣∣∣
η=ζ0

g1 ζ(ζ, η)h(ζ)dζ = ∇n
h(ζ0)

and

− 1
πi

∫

∂D1

∇n
η

∣∣
η=ζ0

g1 ζ(ζ, η)h(ζ)dζ = ∇nh(ζ0)

where ∇η denotes differentiation in the variable η.

Proof. On ∂D1,
2
i

∂g1

∂z
dz =

∂g1

∂n
ds

where n is the outward unit normal in z, so by Green’s identity, for any harmonic
function h on D1,

h(a) = − 1
πi

∫

∂D1

∂g1

∂z
(z, a)h(z)dz.

Now differentiate under the integral sign. ¤

3. Conformal invariance

In this section we introduce a notion of conformal invariance. We consider config-
urations consisting of a pair of domains D1 and D2 such that D1 ⊂ D2. We further
assume that D1 and D2 both possess Green’s functions g1, g2 and complete con-
stant negative curvature metrics λ1(z)|dz|, λ2(z)|dz|. Represent the configuration
with an ordered triple (D1, D2, z). Two configurations (D1, D2, z) and (D̃1, D̃2, z̃)
are said to be conformally equivalent (denoted (D1, D2, z) ≡ (D̃1, D̃2, z̃)) if there
exists a holomorphic bijection between D2 and D̃2 which further carries D1 to D̃1

and z to z̃.
A function Φ(D1, D2, z) from triples into the complex numbers is called a ‘confor-

mal invariant’ if Φ(D1, D2, z) = Φ(D̃1, D̃2, z̃) whenever (D1, D2, z) ≡ (D̃1, D̃2, z̃).
A ‘conformally invariant differential of order n’ is an association of a differential
Φ(D1, D2, z)dzn to each pair of domains as described above, which, for a holomor-
phic bijection h : D2 −→ D̃2, satisfies the transformation rule

Φ(h(D1), h(D2), w)dwn = Φ(D1, D2, z)dzn,

where w = h(z). In other words

(11) Φ(h(D1), h(D2), h(z))h′(z)n = Φ(D1, D2, z).

One can of course also consider differentials of the form g(z)dzn¯dz̄m, or invariants
that depend on a pair of points z and w (such as Green’s function or the quantities
appearing in Theorem 1).

Some examples follow, which can be shown to be invariants by differentiating
the transformation rule λ̃(h(z))|h′(z)| = λ(z) for conformal metrics under a biholo-
morphic change of parameter h.

Example 1. A simple example of a conformal invariant involving the hyperbolic
metrics of D1 and D2 is

Ψ0(D1, D2, z) =
λ2(z)
λ1(z)

.
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In the next few examples, let Γ1 and Γ2 denote the Christoffel symbols of the
hyperbolic metrics λ1 and λ2 respectively.

Example 2. An invariant differential of order one:

Ψ1(D1, D2, z) = Γ2(z)− Γ1(z).

To see this, note that by (2),

Γi(z) = Γ̃i ◦ h(z) h′(z) +
h′′(z)
h′(z)

so
Γ2(z)− Γ1(z) =

(
Γ̃2 ◦ h(z)− Γ̃1 ◦ h(z)

)
h′(z).

Example 3. This example is a special case of the Osgood-Stowe Schwarzian tensor
[13], [14]:

Ψ2(D1, D2, z) =
∂

∂z
(Γ2(z)− Γ1(z)) +

1
2
Γ1(z)2 − 1

2
Γ2(z)2.

Example 4. One can generate an infinite series of invariants using the connection
∇ corresponding to the hyperbolic metric on D2:

Ψn+1(D1, D2, z) = ∇Ψn(D1, D2, z).

(The fact that ∇ preserves conformal invariance will be proved in Proposition 3.)

Example 5. A familiar example of an invariant is the curvature

−λ1(z)−2 ∂2

∂z∂z̄
log λ1(z).

Note that this depends only on a single metric.

This previous example deserves some comment: it only depends on one domain.
However, there are no non-trivial invariant differentials of the form Φ(D1, z)dzn

depending on only one domain. It’s not hard to check this by differentiating the
transformation rule for the metric a few times. On the other hand, there are
differentials of the form Φ(D1, z)dzn¯dz̄m for m and n both positive associated to
a single domain, as the above example shows. The author has verified that for the
first few orders of differentiation, all the invariants are algebraic combinations of
covariant derivatives of the curvature tensor, but has been unable to give a simple
proof of this.

Further examples can be derived from Green’s function, such as g1(z, w),
(∂g1/∂z)dz, K1(z, w), etc.

Remark 4. The conformal invariants can be thought of as moduli for the con-
figuration described above. It’s natural to ask how many moduli are required to
characterize the equivalence class completely. This is easily answered in the case
that D1 and D2 are simply connected. One can always take D2 to be the unit disc
by conformal invariance. There are as many inequivalent configurations as there are
maps from the disc into itself (the image being D1) with 0 mapping to z, modulo
disc automorphisms preserving z. Thus an infinite series is required to specify the
configuration up to conformal equivalence.

It is possible to show that the series given by Examples 1 through 4 characterizes
the configuration up to conformal equivalence, at least in the simply connected case.
We will not prove this here but just remark that it can be shown by writing the
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series in terms of the Taylor series of a mapping function from D2 to D1 as described
above. In [16], universal estimates on these quantities are derived up to order seven
(although the method in principle works for all odd orders.) These estimates are
equivalent to distortion theorems for bounded univalent functions. (See item 2 in
Section 5.)

The connections ∇ and ∇ preserve conformal invariance.

Proposition 3. Let Φ(D1, D2, z)dzn be a conformally invariant differential of or-
der n associated with configurations (D1, D2, z) as described above. Define a differ-
ential of order n + 1 as follows. Given a triple (D1, D2, z), let ∇ be the connection
associated with the hyperbolic metric λ2(z)|dz| on D2. Then, ∇Φ(D1, D2, z)dzn is
also a conformally invariant differential. Similarly, if Φdz̄n is conformally invari-
ant, then so is ∇Φdz̄n.

Proof. Given a conformal map h : D2 −→ D̃2, taking D1 to D̃1, the hyperbolic
metrics on D2 and D̃2 are related via the transformation rule

λ̃2(h(z))|h′(z)||dz| = λ2(z).

Differentiating this equality leads to

Γ̃2(h(z))h′(z) +
h′′(z)
h′(z)

= Γ2(z),

where Γ̃2 and Γ2 are the Christoffel symbols for λ̃2 and λ respectively. On the other
hand, differentiating (11) we have

∂

∂z
Φ(D̃1, D̃2, h(z))h′(z)n+1 + Φ(D̃1, D̃2, h(z))

h′′(z)
h′(z)

h′(z)n =
∂

∂z
Φ(D1, D2, z).

Denoting by ∇̃ the connection corresponding to λ̃2 and combining the two previous
equalities with the definition of ∇ shows that

∇̃Φ(D̃1, D̃2, w)dwn = ∇Φ(D1, D2, z)dzn

¤

Remark 5. In the case that D2 is the plane or the sphere, every conformal map
of D2 must be an affine map or Möbius transformation respectively; if D2 is the
sphere, we restrict attention to Möbius transformations which preserve the chosen
association of antipodal points (i.e. isometries of λk).

In these cases, differentiation with respect to the corresponding connection ∇
preserves invariance under isometries of λk of the outer domain. This can be shown
in a similar way to Proposition 3.

4. The Main inequalities

We now derive inequalities for domain functions constructed using ∇ and ∇.
The summands in the expressions below are conformally invariant in the sense of
Section 3 in the hyperbolic case, and in the sense of Remark 5 in the Euclidean or
elliptic case.

Theorem 1. Let D1 and D2 be smoothly bounded domains, D1 ⊂ D2, with Green’s
functions g1 and g2 respectively, and kernel functions Ki and Li. Also, let ζµ ∈ D1,
µ = 1, . . . , n, and αµ ∈ C. Let ∇ be the connection corresponding to the outer
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domain D2. Denote differentiation in the first variable by ∇ζ and ∇ζ , and in the
second by ∇η and ∇η. Then we have the following inequality:

<
[∑

µ,ν

αµαν(∇ζ)m(∇η)m (L1(ζµ, ζν)− L2(ζµ, ζν))

]

+
∑
µ,ν

αµαν(∇ζ)m(∇η)m (K1(ζµ, ζν)−K2(ζµ, ζν)) ≥ 0

This inequality also holds in the case that D2 = C, if one replaces ∇ by ordinary
differentiation and sets L2 = L0 and K2 = K0. If one further assumes that D1

is elliptically k-schlicht, the inequality above holds in the case that D2 = C, again
replacing ∇ by the connection corresponding to λk, replacing K2 with Kk and L2

by Lk.

Remark 6. The case m = 0, for D2 equivalent to the disc is due to Nehari [12].
Bergman and Schiffer [2] also show that the quantity

<
[∑

µ,ν

αµανL1(ζµ, ζν)

]
+

∑
µ,ν

αµανK1(ζµ, ζν)

decreases as the domain undergoes an outward normal variation. They also prove
the case that m = 0 and the outside domain is the plane using a simple method
involving positive integrals.

Much like the Grunsky inequalities, one can derive inequalities and distortion
theorems for mapping functions from the above inequality. The advantage of con-
sidering higher m is that this results naturally in distortion theorems of higher
order of differentiation for the mapping function.

The quantities on the left-hand side are sums over invariant differentials. To see
this, recall the invariance of Green’s function under a conformal map h : D −→ D̃
of domains

g̃(h(z), h(w)) = g(z, w).
Differentiating this shows that Li(z, w)dz ¯ dw and Ki(z, w)dz ¯ dw̄ are invariant
differentials. One then applies Proposition 3 or Remark 5.

Proof. (of Theorem 1.) We first prove the case that D2 is not the plane or the
sphere. Let

pi(ζ) = <
(∑

ν

αν (∇η)m|η=ζν
gi(ζ, η)

)
.

Consider the piecewise continuous function

ε(ζ) =
{

p2(ζ)− p1(ζ) : ζ ∈ D1

p2(ζ) : ζ ∈ D2\D1

The positivity of the Dirichlet energy of this quantity is the source of the inequality
of the theorem. We now compute this energy using Green’s theorem. Let n denote
the outward unit normal (in ζ).∫∫

∂D2

∇ε · ∇ε dAζ =
∫

∂D2

p2
∂p2

∂n
ds−

∫

∂D1

p2
∂p2

∂n
ds

+
∫

∂D1

(p2 − p1)
(

∂p2

∂n
− ∂p1

∂n

)
ds
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Using the fact that pi|∂Di
= 0, and the positivity of the Dirichlet energy, we get

that

(12) 0 ≤
∫

∂D1

(p1 − p2)
∂p1

∂n
ds

We rewrite this integrand in order to make use of Proposition 2. First, note that
since ∇ηf(z) = ∇ηf(z) for any complex valued function f(z),

p1 =
1
2

∑
ν

(
αν (∇η)m|η=ζν

g1(ζ, η) + αν (∇η)m
∣∣
η=ζν

g1(ζ, η)
)

.

Since p1 = 0 on ∂D1,
∂p1

∂n
ds =

2
i

∂p1

∂ζ
ds,

and so
∂p1

∂nζ
dsζ =

1
2

∑
ν

(
αν (∇η)m|η=ζν

∂g1

∂ζ
(ζ, η) + αν (∇η)m

∣∣
η=ζν

∂g1

∂ζ
(ζ, η)

)
.

So
∫

∂D1

(p1 − p2)
∂p1

∂nζ
dsζ = <

(
1
i

∫

∂D1

∑
ν

αν (∇η)m|η=ζν
(g1(ζ, η)− g2(ζ, η))

·
(∑

ν

αν (∇η)m|η=ζν

∂g1

∂ζ
(ζ, η) + αν (∇η)m

∣∣
η=ζν

∂g1

∂ζ
(ζ, η)

)
dζ

)

Now (g1 − g2) is harmonic on D1 and extends continuously to the boundary since
the boundary is smooth. Thus by Proposition 2,

<
(∑

µ,ν

αµαν(∇ζ)m(∇η)m(g2 − g1)(ζµ, ζν)

)

+
∑
µ,ν

αµαν(∇ζ)m(∇η)m(g2 − g1)(ζµ, ζν) ≥ 0

which finishes the proof in the special case that D2 is not the plane or the sphere.
In the case that D2 is the sphere, one constructs ε slightly differently. Let D∗

1

denote the domain consisting of points antipodal to D1, and p∗1 be given by

p∗1(ζ) = −p1(−(kζ̄)−1),

and finally let

p2(ζ) = <
(∑

ν

αν (∇η)m|η=ζν
gk(ζ, η)

)
.

Define ε by

ε(ζ) =





p1(ζ)− p2(ζ) : ζ ∈ D1

−p2(ζ) : ζ ∈ C\(D1 ∪D∗
1)

p∗1(ζ)− p2(ζ) : ζ ∈ D∗
1

Doing a similar computation to that above and using the fact that p2(−(kζ̄)−1)) =
−p2(ζ), one arrives at

0 ≤
∫

∂D1

(p1 − p2)
∂p1

∂n
ds.

Replacing g2 with gk, the rest of the proof following (12) is identical.
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Finally, in the case of the plane, D1 can be bounded in a disc of sufficiently high
radius 1/

√
|k|; since for k < 0, gk is the actual Green’s function of this disc, we can

apply the first case and let k →∞. ¤

Remark 7. It is possible to weaken the assumption that D1 is smoothly bounded
but we will not pursue this here.

5. Discussion of corollaries and previous results

(1) Theorem 1 holds if one replaces ∇ and ∇ with ∂/∂z and ∂/∂z̄ respectively.
This was proved in [16] in the case that both domains are equivalent to
the disc, and in [17] in the case that the outer domain is C or C. When
one makes this replacement, the quantities in the inequalities are no longer
invariant in the sense of Section 3 or Remark 5 in the hyperbolic case or the
Euclidean and elliptic cases respectively. On the other hand, the quantities
are holomorphic or anti-holomorphic in each variable.

(2) By choosing values of αµ and ζµ, and writing the quantities in Theorem 1
in terms of the mapping function, one can derive estimates on the corre-
sponding class of mappings. For a well-known example, consider the case
that D2 is the unit disc, and f is a univalent map from the disc onto D1.
Set m = 0, n = 1, α = eiθ, and ζ = f(z); this results in the inequality

∣∣∣∣∣
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
∣∣∣∣∣ ≤ 6

(
1− |f ′(z)|2(1− |z|2)2

(1− |f(z)|2)2
)

.

For m > 0 one gets higher-order distortion theorems for bounded univalent
functions; roughly, one gets distortion theorems whose order of differentia-
tion is 2m + 3. In [16] sharp distortion theorems of this kind were derived
from a set of inequalities similar to Theorem 1 (described in the previous
item).

The distortion theorems in [16], when written in terms of the invariants
in Example 4, can be interpreted as higher-order Schwarz lemmas. In par-
ticular, one can estimate the change in geodesic curvature of a curve, and
its derivatives, under a bounded univalent map. The idea of higher-order
Schwarz lemmas seems to be due to Flinn and Osgood [3].

(3) A natural question is, are there inequalities such as Theorem 1 with an
odd order of differentiation? Such odd-order inequalities were proven in
[18] using a modification of Hadamard variation. The quantities involved
in these inequalities are unfortunately not all conformally invariant; on the
other hand, they are holomorphic or anti-holomorphic in both variables.

6. Open questions

(1) The Ahlfors-Beurling theorem provides a link between extremal length and
Dirichlet energy. So a natural question is: can one give extremal metric in-
terpretations of the conformal invariants in Example 4 or Theorem 1? (This
question is one of the reasons for the insistence on conformal invariance.)

One can interpret Example 1 in terms of the reduced modules of D1

and D2. The monotonicity of reduced module is a form of the Schwarz
lemma. Can one give higher-order extremal metric quantities that produce
‘higher-order’ geometric distortion theorems?
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It may not be necessary to restrict to length-area methods; Ahlfors [1]
and Minda [10] have developed a ‘geodesic curvature-area’ method for com-
puting modules. There is a connection between the quantities in Examples
2 and 3 and curvature [16], so it’s not a stretch that modifications of these
geodesic curvature-area methods might produce such invariants.

(2) Can one prove inequalities such as those in Theorem 1 with odd order of
differentiation, that are also conformally invariant?

(3) Can one identify the connectedness of, say, the inner domain from the
conformal invariants? For example, setting D2 = C and treating L1−L2 as
an bounded operator on the Bergman space, it was shown by Bergman and
Schiffer [2] that the dimension of the 1-eigenspace of L1−L2 is n− 1 if the
connectivity of the inner domain is n. (This is closely related to the fact
that there are n− 1 linearly independent harmonic functions with constant
boundary values on an n-connected domain.) Do higher-order invariants
contain information about connectivity?
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