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Abstract. We consider bordered Riemann surfaces which are biholomorphic to compact
Riemann surfaces of genus g with n regions biholomorphic to the disk removed. We define
a refined Teichmüller space of such Riemann surfaces (which we refer to as the WP-class
Teichmüller space) and demonstrate that in the case that 2g + 2 − n > 0, this refined
Teichmüller space is a Hilbert manifold. The inclusion map from the refined Teichmüller
space into the usual Teichmüller space (which is a Banach manifold) is holomorphic.

We also show that the rigged moduli space of Riemann surfaces with non-overlapping
holomorphic maps, appearing in conformal field theory, is a complex Hilbert manifold. This
result requires an analytic reformulation of the moduli space, by enlarging the set of non-
overlapping mappings to a class of maps intermediate between analytically extendible maps
and quasiconformally extendible maps. Finally we show that the rigged moduli space is the
quotient of the refined Teichmüller space by a properly discontinuous group of biholomor-
phisms.

1. Introduction

In this paper, we construct a refinement of the Teichmüller space of bordered Riemann
surfaces of genus g with n boundary curves homeomorphic to the circle, which we will refer
to as the Weil-Petersson class Teichmüller space. If 2g+ 2− n > 0 this Weil-Petersson class
Teichmüller space possesses a Hilbert manifold structure, and furthermore the inclusion
map from this Teichmüller space into the standard one is holomorphic. Using the results of
the present paper, the authors showed that the Teichmüller space in this paper possesses a
convergent Weil-Petersson metric [26]. (This justifies the term “Weil-Petersson class”, which
we will often abbreviate as “WP-class”).

Our approach can be summarized as follows: we combine the results of L. Takhtajan and
L.-P. Teo [29] and G. Hui [11] refining the universal Teichmüller space, with the results of
D. Radnell and E. Schippers [21, 22, 23] demonstrating the relation between a moduli space
in conformal field theory and the Teichmüller space of bordered surfaces. We also require
a result by S. Nag [17, 18] on the variational method of F. Gardiner and M. Schiffer [9],
together with the theory of marked holomorphic families of Riemann surfaces (see for example
[6, 14, 18]). An essential part of our approach is the utilization of a kind of fibration of the
(infinite-dimensional) Teichmüller space of bordered surfaces over the (finite-dimensional)
Teichmüller space of compact Riemann surfaces with punctures discovered by the first two
authors in [23]. Each fiber is a collection of n-tuples of non-overlapping maps into a fixed
punctured Riemann surfaces, of a certain regularity. The authors demonstrated that, in the
Weil-Petersson class case, the fibers are complex Hilbert manifolds [24, 25].
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Our investigations are motivated both by Teichmüller theory (see below), and by confor-
mal field theory, where our results are required to solve certain analytic problems in the
construction of conformal field theory from vertex operator algebras following Y.-Z. Huang
[12]. First, we give some background for the problem, and then outline our approach.

There has been interest in refinements of quasiconformal Teichmüller space for some time
[2, 5, 10]. It was previously observed by S. Nag and A. Verjovsky [19] that the Weil-Petersson
metric diverges on the Bers universal Teichmüller space except on a subspace of the tangent
space. A family of Lp-class universal Teichmüller spaces was given by Hui [11], who attributed
the L2 case to G. Cui [4]. The L2 case has now come to be called the “Weil-Petersson
class universal Teichmüller space” [28], since this universal Teichmüller space possesses a
convergent Weil-Petersson metric. Independently, Takhtajan and Teo [29] defined a Hilbert
manifold structure on the universal Teichmüller space and the universal Teichmüller curve,
equivalent to that of Hui, and furthermore showed that it is a topological group. They also
obtained potentials for the Weil-Petersson metric and investigated its relation to the Kirillov-
Yuri’ev-Nag-Sullivan period map, a holomorphic embedding of the universal Teichmüller
space via the period map, and its relation to the generalized Grunsky matrix, among other
results. Using the results of the present paper, the authors demonstrated that the Teichmüller
space of bordered surfaces studied in this paper possesses a convergent Weil-Petersson metric
[26], thus generalizing some of the results of [4, 11, 29].

The other motivation comes from conformal field theory, where one considers a moduli
space of Riemann surfaces with extra data, originating with D. Friedan and S. Shenker [8].
We will use two different formulations of this moduli space due to G. Segal [27] and C. Vafa
[31]. Vafa’s puncture model of the rigged moduli space consists of equivalence classes of
pairs (Σ, φ), where Σ is a compact Riemann surface with n punctures, and φ = (φ1, . . . , φn)
is an n-tuple of one-to-one holomorphic maps from the unit disk D ⊂ C into the Riemann
surface with non-overlapping images. Two such pairs (Σ1, φ) and (Σ2, ψ) are equivalent if
there is a biholomorphism σ : Σ1 → Σ2 such that ψi = σ ◦φi for i = 1, . . . , n. The n-tuple of
maps (φ1, . . . , φn) is called the rigging, and is usually subject to some additional regularity
conditions which vary in the conformal field theory literature. The choice of these regularity
conditions relates directly to the analytic structure of this moduli space. The regularity
also relates directly to the regularity of certain elliptic operators, which are necessary for
the rigorous definition of conformal field theory in the sense of Segal [27]. In this paper we
show that the rigged moduli space has a Hilbert manifold structure, and that this Hilbert
manifold structure arises naturally from a refined Teichmüller space of bordered surfaces,
which we also show is a Hilbert manifold. These results are further motivated by the fact
that the aforementioned elliptic operators will have convergent determinants on precisely this
refined moduli space. We hope to return to this question in a future publication. Moreover,
these results will have applications to the construction of higher genus conformal field theory,
following a program of Huang and others [12, 13].

These results are made possible by previous work of two of the authors [22], in which
it was shown that if one chooses the riggings to be extendible to quasiconformal maps of a
neighborhood of the closure of D, then the rigged moduli space is the same as the Teichmüller
space of a bordered Riemann surface (up to a properly discontinuous group action). Thus the
rigged moduli space inherits a complex Banach manifold structure from Teichmüller space.
This solved certain analytic problems in the definition of conformal field theory, including
holomorphicity of the sewing operation.
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On the other hand this also provided an alternate description of the Teichmüller space of a
bordered surface Σ as a fiber space that is locally modeled on the following rigged Teichmüller
space. In [23] (following the first author’s thesis [20]), two of the authors introduced the rigged
Teichmüller space based on quasiconformally extendible riggings, which is the analogue of
the above rigged moduli space. It was proved that this rigged Teichmüller space is a fiber
space: the fibers consist of non-overlapping maps into a compact Riemann surface with
punctures obtained by sewing copies of the punctured disk onto the boundaries of Σ. The
base space is the finite-dimensional Teichmüller space of the compact surface with punctures
so obtained.

Thus the Teichmüller space of bordered surfaces has two independent complex Banach
manifolds structures: the standard one, obtained from the Bers embedding of spaces of
equivalent Beltrami differentials, and one obtained from the fiber model. It was shown that
the two are equivalent [22, 23]. The fibers are a natural function space of quasiconformally
extendible conformal maps with non-overlapping images (these are also the riggings described
above). In [24, 25] we use the results of Hui [11] and Takhtajan and Teo [29] to show that
if one restricts to WP-class non-overlapping mappings then the collection of riggings is a
Hilbert manifold. Here we define the WP-class rigged Teichmüller space and prove that it is
a Hilbert manifold by using the fiber structure and the aforementioned results. Finally, we
define a refined Teichmüller space of bordered surfaces and, via the fiber model, show that
it is a Hilbert manifold using the refined rigged Teichmüller space. Charts for the refined
Teichmüller space will be defined completely explicitly, using Gardiner-Schiffer variation and
natural function spaces of non-overlapping maps.

The proof that these charts define a Hilbert manifold structure is somewhat complicated.
We proceed in the following way. In Section 2, we define the refined quasiconformal mappings
and function spaces which will appear in the paper. This section mostly establishes notation
and outlines some previous results, and proves some elementary facts about the refined map-
pings. In Section 2.4, we define the set of WP-class non-overlapping mappings which serves
as a model of the fibers, and recall the construction of the holomorphic atlas from [24, 25]. In
Section 3, we show that the WP-class rigged Teichmüller space is a Hilbert manifold. We do
this using the results of the previous section, and Gardiner-Schiffer variation. A key part of
the argument relies on the universality properties of the universal Teichmüller curve and the
theory of marked holomorphic families of Riemann surfaces. Finally, in Section 4 we show
that the WP-class Teichmüller space of a bordered Riemann surface is a Hilbert manifold,
by showing that it covers the refined rigged Teichmüller space and passing the structure
upwards. Furthermore, we show that the Hilbert manifold structure passes downwards to
the two versions of the rigged moduli space of conformal field theory defined by Segal [27]
and Vafa [31].

2. Definitions and results on WP-class mappings

In Section 2.1 we collect some known results on the refinement of the set of quasisymmetries
and quasiconformal maps, from the work of Takhtajan and Teo [29], Teo [30] and Hui [11].
We also collect some theorems of the authors which will be necessary in the rest of the paper
[24, 25]. In Section 2.2 we define the WP-class quasisymmetries between borders of Riemann
surfaces in an obvious way and some elementary results are derived. This is then used to
define the WP-class quasiconformal maps between Riemann surfaces in Section 2.3.
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Finally, in Section 2.4 we recall the definition of the class of non-overlapping WP-class
maps and the main theorems regarding the Hilbert manifold structure on them, obtained
in [24, 25]. These non-overlapping maps are fibered over the finite-dimensional Teichmüller
space of punctured Riemann surfaces. We will use this fact to construct the Hilbert manifold
structure of the WP-class Teichmüller space.

2.1. WP-class maps on the disk and circle. In this section we give the definitions of
Weil-Petersson class (henceforth WP-class) conformal maps of the disk and quasisymmetries
of the circle. We also state some of the fundamental results regarding these, given in the
theory of the Weil-Petersson universal Teichmüller space of Takhtajan and Teo [29] and Guo
Hui [11]. We also state some results obtained by the authors in [24, 25] which will be essential
to the main results of this paper.

In [22] we defined the set Oqc of quasiconformally extendible maps in the following way.

Definition 2.1. Let Oqc be the set of maps f : D→ C such that f is one-to-one, holomor-
phic, has quasiconformal extension to C, and f(0) = 0.

A Banach space structure can be introduced on Oqc as follows. Let

(2.1) A∞1 (D) =

{
φ ∈ H(D) : ‖φ‖A∞1 (D) = sup

z∈D
(1− |z|2)|φ(z)| <∞

}
.

This is a Banach space. It follows directly from results of Teo [30] that for

A(f) =
f ′′

f ′

the map

χ : Oqc −→ A∞1 (D)⊕ C
f 7−→ (A(f), f ′(0))(2.2)

takes Oqc onto an open subset of the Banach space A∞1 (D)⊕C (see [22]). Thus Oqc inherits
a complex structure from A∞1 (D)⊕ C.

The space Oqc can be thought of as a two-complex-dimensional extension of the universal
Teichmüller space. We will construct a Hilbert structure on a subset of Oqc. To do this, in
place of A∞1 (D) we use the Bergman space

A2
1(D) =

{
φ ∈ H(D) : ‖φ‖2

2 =

∫∫
D
|φ|2 dA <∞

}
which is a Hilbert space and a vector subspace of the Banach space A∞1 (D). Furthermore,
the inclusion map from A2

1(D) to A∞1 (D) is bounded [29, Chapter II Lemma 1.3]. Here and
in the rest of the paper we shall denote the Bergman space norm ‖ · ‖A2

1
by ‖ · ‖.

We define the class of WP quasiconformally extendible maps as follows.

Definition 2.2. Let

Oqc
WP =

{
f ∈ Oqc : A(f) ∈ A2

1(D)
}
.

We will embed Oqc
WP in the Hilbert space direct sum W = A2

1(D) ⊕ C. Since χ(Oqc) is
open, χ(Oqc

WP) = χ(Oqc) ∩ A2
1(D) is also open, and thus Oqc

WP trivially inherits a Hilbert
manifold structure from W . We summarize this with the following theorem.
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Theorem 2.3 ([24, 25]). The inclusion map A2
1(D) → A∞1 (D) is continuous. Furthermore

χ(Oqc
WP) is an open subset of the vector subspace W = A2

1(D) ⊕ C of A∞1 (D) ⊕ C, and the
inclusion map from χ(Oqc

WP) to χ(Oqc) is holomorphic. Thus the inclusion map ι : Oqc
WP →

Oqc is holomorphic.

Lemma 2.4 ([24, 25]). Let f ∈ Oqc
WP. Let h be a one-to-one holomorphic map defined on an

open set W containing f(D). Then h◦f ∈ Oqc
WP. Furthermore, there is an open neighborhood

U of f in Oqc
WP and a constant C such that ‖A(h ◦ g)‖ ≤ C for all g ∈ U .

We will also need a technical lemma on a certain kind of holomorphicity of left composition
in Oqc

WP.

Lemma 2.5 ([24, 25]). Let E be an open subset of C containing 0 and ∆ an open subset of
C. Let H : ∆ × E → C be a map which is holomorphic in both variables and injective in
the second variable. Let hε(z) = H(ε, z) and let ψ ∈ Oqc

WP satisfy ψ(D) ⊆ E. Then the map
Q : ∆ 7→ Oqc

WP defined by Q(ε) = hε ◦ ψ is holomorphic in ε.

Next, we define a subset QSWP(S1) of the quasisymmetries in the following way. Briefly,
a map h : S1 → S1 is in QSWP(S1) if the corresponding welding maps are in Oqc

WP. Let
D∗ = {z : |z| > 1}∪ {∞}, and let QS(S1) be the set of quasisymmetric maps from S1 to S1.
For h ∈ QS(S1) let wµ(h) : D∗ → D∗ be a quasiconformal extension of h with dilatation µ
(such an extension exists by the Ahlfors-Beurling extension theorem). Furthermore, let wµ :
C̄→ C̄ be the quasiconformal map with dilatation µ on D∗ and 0 on D, with normalization
wµ(0) = 0, wµ′(0) = 1 and wµ(∞) =∞ and set

F (h) = wµ|D .
It is a standard fact that F (h) is independent of the choice of extension wµ.

Definition 2.6. We define a subset of QS(S1) by

QSWP(S1) = {h ∈ QS(S1) : F (h) ∈ Oqc
WP}.

Remark 2.7. A change in the normalization of wµ′(0) results in exactly the same set.

An alternate characterization of Oqc
WP follows from a theorem proved by Guo Hui [11]. Let

L2
hyp(D∗) =

{
µ :

∫∫
D∗

(|z|2 − 1)−2|µ(z)|2dA <∞
}
,

and let
L∞(D∗)1 = {µ : D∗ → C : ‖µ‖∞ ≤ k for some k < 1}

(that is, the unit ball in L∞(D∗)). Note that the line element of the hyperbolic metric on
D is |dz|(1− |z|2)−1 and the line element of the hyperbolic metric on D∗ is |dz|(|z|2 − 1)−1.
Thus the above condition says that µ is L2 with respect to hyperbolic area. The following
two theorems follow from Theorems 1 and 2 of [11].

Theorem 2.8 (Hui). Let f be a one-to-one holomorphic function on D such that f(0) = 0.

Then f ∈ Oqc
WP if and only if there exists a quasiconformal extension f̃ of f to C whose

dilatation µ is in L2
hyp(D∗) ∩ L∞(D∗)1.

Theorem 2.9 (Hui). Let φ : S1 → S1 be a quasisymmetry. Then φ ∈ QSWP(S1) if and only
if there is a quasiconformal extension h : D∗ → D∗ of φ such that the Beltrami differential
µ(h) of h is in L2

hyp(D∗).
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It follows from Theorem 1.12 of Part II and Lemma 3.4 of Part I of [29] that QSWP(S1) is
a group.

Theorem 2.10 (Takhtajan-Teo). The set QSWP(S1) is closed under composition and inver-
sion.

By an analytic map h : S1 → S1 we mean that h is the restriction of an analytic map of
a neighborhood of S1. Let A(r, s) denote the annulus {z : r < |z| < s} and D(z0, r) denote
the disk {z : |z − z0| < r}.

Proposition 2.11. If h : S1 → S1 is one-to-one and analytic, then h has a quasiconformal
extension to D∗ which is holomorphic in an annulus A(1, R) for some R > 1. Furthermore
h ∈ QSWP(S1).

Proof. To prove the first claim, observe that h has an analytic extension h̃ to some annulus
A(r, s) for r < 1 < s. LetR be such that 1 < R < s. Applying the Ahlfors-Beurling extension
theorem to the circle |z| = R, there exists a quasiconformal map g : A(R,∞) → A(R,∞)

whose boundary values agree with h̃ restricted to |z| = R. Let H be the map which is equal

to h̃ on A(1, R) and g on A(R,∞). Then H is quasiconformal on D∗ since it is quasiconformal
on the two pieces and continuous on D (see [15, V.3]). Thus, H has the desired properties.

The second claim follows from Theorem 2.8 since the dilatation of H is zero in A(1, R). �

2.2. Refined quasisymmetric mappings between boundaries of Riemann surfaces.
We first clarify the meaning of “bordered Riemann surface”. By a half-disk, we mean a set
of the form {z : |z − z0| < r and Im(z) ≥ 0} for some z0 on the real axis. By a bordered
Riemann surface, we mean a Riemann surface with boundary, such that for every point on
the boundary there is a homeomorphism of a neighborhood of that point onto a half-disk. It
is further assumed that for any pair of charts ρ1, ρ2 whose domains overlap, the map ρ2 ◦ρ−1

1

and its inverse is a one-to-one holomorphic map on its domain. Note that this implies, by
the Schwarz reflection principle, that ρ2 ◦ ρ−1

1 extends to a one-to-one holomorphic map of
an open set containing the portion of the real axis in the domain of the original map. Every
bordered Riemann surface has a double which is defined in the standard way. See for example
[1].

Following standard terminology (see for example [18]) we say that a Riemann surface is
of finite topological type if its fundamental group is finitely generated. A Riemann surface
is said to be of finite topological type (g, n,m) if it is biholomorphic to a compact genus g
Riemann surface with n points and m parametric disks removed. By a parametric disk we
mean a region biholomorphic to the unit disk.

In this paper we will be entirely concerned with Riemann surfaces of type (g, 0, n) and
(g, n, 0) and we will use the following terminology. A bordered Riemann surface of type (g, n)
will refer to a bordered Riemann surface of type (g, 0, n) and a punctured Riemann surface
of type (g, n) will refer to a Riemann surface of type (g, n, 0). It is furthermore assumed
that the boundary curves and punctures are given a numerical ordering. Finally, a boundary
curve will be understood to mean a connected component of the boundary of a bordered
Riemann surface. Note that each boundary curve is homeomorphic to S1.

Remark 2.12. Any quasiconformal map between bordered Riemann surfaces has a unique
continuous extension taking the boundary curves to the boundary curves. To see this let
ΣB

1 and ΣB
2 be bordered Riemann surfaces, and let Σd

1 and Σd
2 denote their doubles. By
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reflecting, the quasiconformal map extends to the double: the reflected map is continuous on
Σd

1, takes Σd
1 onto Σd

2, and is quasiconformal on the double minus the boundary curves. Since
each boundary curve of ΣB

i is an analytic curve in the double, the map is quasiconformal on
Σd

1 [15, V.3] and in particular continuous on each analytic curve.
Throughout the paper, we will label the original map and its continuous extension with

the same letter to avoid complicating the notation. When referring to a “bordered Riemann
surface”, we will be referring to the interior. However, in the following all maps between
bordered Riemann surfaces will be at worst quasiconformal and thus by Remark 2.12 have
unique continuous extensions to the boundary. Thus the reader could treat the border as
included in the Riemann surface with only trivial changes to the statements in the rest of
the paper.

Definition 2.13. Let ΣB be a bordered Riemann surface and C be one of its boundary
components. A collar neighborhood of C is an open set U which is biholomorphic to an
annulus, and one of whose boundary curves is C. A collar chart of C is a biholomorphism
H : U → A(1, r) where U is a collar neighborhood of C, whose continuous extension to C
maps C to S1.

Note that any collar chart must have a continuous one-to-one extension to C, which maps
C to S1. (In fact application of the Schwarz reflection principle shows that H must have a
one-to-one holomorphic extension to an open tubular neighborhood of C in the double of Σ.)
We may now define the class of WP quasisymmetries between boundary curves of bordered
Riemann surfaces.

Definition 2.14. Let ΣB
1 and ΣB

2 be bordered Riemann surfaces, and let C1 and C2 be
boundary curves of ΣB

1 and ΣB
2 respectively. Let QSWP(C1, C2) denote the set of orientation-

preserving homeomorphisms φ : C1 → C2 such that there are collar charts Hi of Ci, i = 1, 2
respectively, such that H2 ◦ φ ◦H−1

1

∣∣
S1 ∈ QSWP(S1).

Remark 2.15. The notation QSWP(S1, C1) will always be understood to refer to S1 as the
boundary of an annulus A(1, r) for r > 1. We will also write QSWP(S1) = QSWP(S1,S1).

Proposition 2.16. If φ ∈ QSWP(C1, C2) then for any pair of collar charts Hi of Ci, i = 1, 2
respectively, H2 ◦ φ ◦H−1

1

∣∣
S1 ∈ QSWP(S1).

Proof. Assume that there are collar charts H ′i of Ci such that H ′2 ◦ φ ◦ H ′1
−1 ∈ QSWP(S1).

Let Hi be any other pair of collar charts. The composition

H2 ◦H ′2
−1 ◦H ′2 ◦ φ ◦H ′1

−1 ◦H ′1 ◦H−1
1 = H2 ◦ φ ◦H−1

1

is defined on some collar neighborhood of C1. Since H2 ◦H ′2
−1 and H ′1 ◦H−1

1 have analytic
extensions to S1, the result follows from Proposition 2.11 and Theorem 2.10. �

Proposition 2.17. Let ΣB
i be bordered Riemann surfaces and Ci a boundary curve on

each surface for i = 1, 2, 3. If φ ∈ QSWP(C1, C2) and ψ ∈ QSWP(C2, C3) then ψ ◦ φ ∈
QSWP(C1, C3).

Proof. Let Hi be collar charts of Ci for i = 1, 2, 3. In that case

H3 ◦ ψ ◦ φ ◦H−1
1 = H3 ◦ ψ ◦H−1

2 ◦H2 ◦ φ ◦H−1
1

when restricted to C1. By Proposition 2.16 both H3 ◦ ψ ◦ H−1
2 and H2 ◦ φ ◦ H−1

1 are in
QSWP(S1), so the composition is in QSWP(S1) by Theorem 2.10. Thus ψ ◦φ ∈ QSWP(C1, C3)
by definition. �
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2.3. A WP-class of quasiconformal mappings between bordered surfaces. We can
now define a WP-class of quasiconformal mappings.

Definition 2.18. Let ΣB
1 and ΣB

2 be bordered Riemann surfaces of type (g, n), with bound-
ary curves Ci

1 and Cj
2 i = 1, . . . , n and j = 1, . . . , n respectively. The class of maps

QC0(ΣB
1 ,Σ

B
2 ) consists of those quasiconformal maps from ΣB

1 onto ΣB
2 such that the con-

tinuous extension to each boundary curve Ci
1, i = 1, . . . , n is in QSWP(Ci

1, C
j
2) for some

j ∈ {1, . . . , n}.
Note that the continuous extension to a boundary curve Ci

1 must map onto a boundary
curve Cj

2 .
The following two Propositions follow immediately from Definition 2.18 and Proposition

2.17.

Proposition 2.19. Let ΣB
i i = 1, 2, 3 be bordered Riemann surfaces of type (g, n). If f ∈

QC0(ΣB
1 ,Σ

B
2 ) and g ∈ QC0(ΣB

2 ,Σ
B
3 ) then g ◦ f ∈ QC0(ΣB

1 ,Σ
B
3 ).

Proposition 2.20. Let ΣB
1 and ΣB

2 be bordered Riemann surfaces. Let C1 be a boundary
curve of ΣB

1 , φ ∈ QSWP(S1, C1), f ∈ QC0(ΣB
1 ,Σ

B
2 ) and C2 = f(C1) be the boundary curve of

ΣB
2 onto which f maps C1. Then f ◦ φ ∈ QSWP(S1, C2).

2.4. The class of non-overlapping mappings and its complex structure. Now we
recall some of the definitions and theorems from [24, 25] which will be necessary in the rest
of the paper.

We define a class of non-overlapping mappings into a punctured Riemann surface. Let
D0 denote the punctured disk D\{0}. Let Σ be a compact Riemann surface with punctures
p1, . . . , pn.

Definition 2.21. The class of non-overlapping quasiconformally extendible maps Oqc(Σ)
into Σ is the set of n-tuples (φ1, . . . , φn) where

(1) For all i ∈ {1, . . . , n}, φi : D0 → Σ is holomorphic, and has a quasiconformal extension
to a neighborhood of D.

(2) The continuous extension of φi takes 0 to pi
(3) For any i 6= j, φi(D) ∩ φj(D) is empty.

It was shown in [22] that Oqc(Σ) is a complex Banach manifold.
As in the previous section, we need to refine the class of non-overlapping mappings. We

first introduce some terminology. Denote the compactification of a punctured surface Σ by
Σ.

Definition 2.22. An n-chart on Σ is a collection of open sets E1, . . . , En contained in
the compactification of Σ such that Ei ∩ Ej is empty whenever i 6= j, together with local
parameters ζi : Ei → C such that ζi(pi) = 0.

In the following, we will refer to the charts (ζi, Ei) as being on Σ, with the understand-
ing that they are in fact defined on the compactification. Similarly, non-overlapping maps
(f1, . . . , fn) will be extended by the removable singularities theorem to the compactification,
without further comment.

Definition 2.23. Let Oqc
WP(Σ) be the set of n-tuples of maps (f1, . . . , fn) ∈ Oqc(Σ) such that

for any choice of n-chart ζi : Ei → C, i = 1, . . . , n satisfying fi(D) ⊂ Ei for all i = 1, . . . , n,
it holds that ζi ◦ fi ∈ Oqc

WP.
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The space Oqc
WP(Σ) is well-defined, in the sense that if an n-tuple (f1, . . . , fn) satisfies the

definition with respect to a particular n-chart, then it satisfies the definition with respect to
any other n-chart satisfying the condition fi(D) ⊂ Ei [24, 25].

The following theorem plays an essential role topologically in the Hilbert manifold struc-
ture on both Oqc

WP(Σ) and the WP-class Teichmüller space.

Theorem 2.24. Let E be an open neighborhood of 0 in C. Then the set{
f ∈ Oqc : f(D) ⊂ E

}
is open in Oqc and the set {

f ∈ Oqc
WP : f(D) ⊂ E

}
is open in Oqc

WP.

Composition on the left by h is holomorphic operation in both Oqc and Oqc
WP. This was

proven in [22] in the case of Oqc. The corresponding theorem in the WP case is considerably
more delicate [24, 25]. This fact plays an essential role in the construction of a holomorphic
atlas on both Oqc

WP(ΣP ) and the WP-class Teichmüller space.

Theorem 2.25. Let K ⊂ C be a compact set which is the closure of an open neighborhood
Kint of 0 and let A be an open set in C containing K. If U is the open set

U = {g ∈ Oqc
WP : g(D) ⊂ Kint},

and h : A→ C is a one-to-one holomorphic map such that h(0) = 0, then the map f 7→ h◦f
from U to Oqc

WP is holomorphic.

Remark 2.26. The fact that U is open follows from Theorem 2.24.

Now, we define the topological structure of Oqc
WP(Σ).

Definition 2.27. For any n-chart (ζ, E) = (ζ1, E1, . . . , ζn, En) (see Definition 2.22), we say
that an n-tuple U = (U1, . . . , Un) ⊂ Oqc

WP × · · · × O
qc
WP, with Ui open in Oqc

WP, is compatible

with (ζ, E) if f(D) ⊂ ζi(Ei) for all f ∈ Ui.
For any n-chart (ζ, E) and compatible open subset U of Oqc

WP × · · · × O
qc
WP let

Vζ,E,U = {g ∈ Oqc
WP(Σ) : ζi ◦ gi ∈ Ui, i = 1, . . . , n}(2.3)

= {(ζ−1
1 ◦ h1, . . . , ζ

−1
n ◦ hn) : hi ∈ Ui, i = 1, . . . , n}.

Definition 2.28 (base a for topology on Oqc
WP(Σ)). Let

V = {Vζ,E,U : (ζ, E) an n-chart, U compatible with (ζ, E)}.
Theorem 2.29. The set V is the base for a topology on Oqc

WP(Σ). This topology is Hausdorff
and second countable.

Remark 2.30. In particular, Oqc
WP(Σ) is separable since it is second countable and Hausdorff.

We make one final simple but useful observation regarding the base V .
For a Riemann surface Σ denote by V(Σ) the base for Oqc

WP(Σ) given in Definition 2.28.
For a biholomorphism ρ : Σ→ Σ1 of Riemann surfaces Σ and Σ1, and for any V ∈ V(Σ), let

ρ(V ) = {ρ ◦ φ : φ ∈ V }
and

ρ(V(Σ)) = {ρ(V ) : V ∈ V}.
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Theorem 2.31. If ρ : Σ→ Σ1 is a biholomorphism between punctured Riemann surfaces Σ
and Σ1 then ρ(V(Σ)) = V(Σ1).

Definition 2.32 (standard charts onOqc
WP(Σ)). Let (ζ, E) be an n-chart on Σ and let κi ⊂ Ei

be compact sets containing pi. Let Ki = ζi(κi). Let Ui = {ψ ∈ Oqc
WP : ψ(D) ⊂ interior(Ki)}.

Each Ui is open by Theorem 2.24 and U = (U1, . . . , Un) is compatible with (ζ, E) so we have
Vζ,E,U ∈ V . A standard chart on Oqc

WP(Σ) is a map

T : Vζ,E,U −→ Oqc
WP × · · · × O

qc
WP

(f1, . . . , fn) 7−→ (ζ1 ◦ f1, . . . , ζn ◦ fn).

Remark 2.33. To obtain a chart into a Hilbert space, one simply composes with χ as defined
by (2.2). Abusing notation somewhat and defining χn by

χn ◦ T : Vζ,E,U −→
n⊕
A2

1(D)⊕ C

(f1, . . . , fn) 7−→ (χ ◦ ζ1 ◦ f1, . . . , χ ◦ ζn ◦ gn)

we obtain a chart into
⊕nA2

1(D) ⊕ C. Since χ(Oqc
WP) is an open subset of A2

1(D) ⊕ C by
Theorem 2.3, and χ defines the complex structure Oqc

WP, we may treat T as a chart with the
understanding that the true charts are obtained by composing with χn.

Theorem 2.34. Let Σ be a punctured Riemann surface of type (g, n). With the atlas consist-
ing of the standard charts of Definition 2.32, Oqc

WP(Σ) is a complex Hilbert manifold, locally
biholomorphic to Oqc

WP × · · · × O
qc
WP.

Remark 2.35 (chart simplification). Now that this theorem is proven, we can simplify the

definition of the charts. For an n-chart (ζ, E), if we let Ui = {f ∈ Oqc
WP : f(D) ⊂ ζi(Ei)},

then the charts T are defined on Vζ,E,U . It is easy to show that T is a biholomorphism on
Vζ,E,U , since any f ∈ Vζ,E,U is contained in some Vζ,E,W ⊂ Vζ,E,U which satisfies Definition
2.32, and thus T is a biholomorphism on Vζ,E,W by Theorem 2.34.

Remark 2.36 (standard charts on Oqc(Σ)). A standard chart on Oqc(Σ) is defined in the
same way as Definition 2.32 and its preamble, by replacing Oqc

WP with Oqc everywhere.
Furthermore with this atlas Oqc(Σ) is a complex Banach manifold [22].

Finally, we show that the inclusion map I : Oqc
WP → Oqc is holomorphic.

Theorem 2.37. The complex manifold Oqc
WP(Σ) is holomorphically contained in Oqc(Σ) in

the sense that the inclusion map I : Oqc
WP(Σ)→ Oqc(Σ) is holomorphic.

3. The rigged Teichmüller space is a Hilbert manifold

In [21], two of the authors proved that the Teichmüller space of a bordered surface is (up
to a quotient by a discrete group) the same as a certain rigged Teichmüller space whose
corresponding rigged moduli space appears naturally in two-dimensional conformal field
theory [8, 12, 27]. We will use this fact to define a Hilbert manifold structure on the WP-
class Teichmüller space in Section 4.

First we must define an atlas on rigged Teichmüller space, and this is the main task of
the current section. We will achieve this by using universality of the universal Teichmüller
curve together with a variational technique called Schiffer variation as adapted to the qua-
siconformal Teichmüller setting by Gardiner [9] and Nag [17, 18]. This overall approach was
first developed in the thesis of the first author [20] for the case of analytic riggings.
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3.1. Definition of rigged Teichmüller space. We first recall the definition of the usual
Teichmüller space. The reader is referred to Section 2.2 for terminology regarding Riemann
surfaces.

Definition 3.1. Fix a Riemann surface X (of any topological type). Let

T (X) = {(X, f,X1)}/ ∼
where

(1) X1 is a Riemann surface of the same topological type as X.
(2) f : X → X1 is a quasiconformal homeomorphism (the marking map).
(3) the equivalence relation (∼) is defined by (X, f1, X1) ∼ (X, f2, X2) if and only if

there exists a biholomorphism σ : X1 → X2 such that f−1
2 ◦ σ ◦ f1 is homotopic to

the identity rel boundary.

The term rel boundary means that the homotopy is the identity on the boundary throughout
the homotopy.

It is a standard fact of Teichmüller theory (see for example [18]) that if X is a punctured
surface of type (g, n) then T (X) is a complex manifold of dimension 3g − 3 + n, and if X
is a bordered surface of type (g, n) then T (X) is an infinite-dimensional complex Banach
manifold.

Using the set Oqc
WP(Σ) we now define the WP-class rigged Teichmüller space, denoted by

T̃WP(Σ).

Definition 3.2. Fix a punctured Riemann surface of type (g, n). Let

T̃WP(Σ) = {(Σ, f,Σ1, φ)}/ ∼
where

(1) Σ1 is a punctured Riemann surface of type (g, n)
(2) f : Σ→ Σ1 is a quasiconformal homeomorphism
(3) φ ∈ Oqc

WP(Σ1).
(4) Two quadruples are said to be equivalent, denoted by (Σ, f1,Σ1, φ1) ∼ (Σ, f2,Σ2, φ2),

if and only if there exists a biholomorphism σ : Σ1 → Σ2 such that f−1
2 ◦ σ ◦ f1 is

homotopic to the identity rel boundary and φ2 = σ ◦ φ1.

The equivalence class of (Σ, f1,Σ1, φ1) will be denoted [Σ, f1,Σ1, φ1]

Condition (2) can be stated in two alternate ways. One is to require that f maps the
compactification of Σ into the compactification of Σ1, and takes the punctures of Σ to the
punctures of Σ1 (now thought of as marked points). The other is to say simply that f is
a quasiconformal map between Σ and Σ1. Since f is quasiconformal its extension to the
compactification will take punctures to punctures. Thus condition (2) does not explicitly
mention the punctures.

In [21], two of the authors defined a rigged Teichmüller space T̃ (Σ) with Oqc
WP(Σ1) re-

placed by Oqc(Σ1) in the above definition. It was demonstrated in [21] that T̃ (Σ) has a
complex Banach manifold structure, which comes from the fact that it is a quotient of the
Teichmüller space of a bordered surface by a properly discontinuous, fixed-point free group
of biholomorphisms. In [23] they demonstrated that it is fibered over T (Σ), where the fiber
over a point [Σ, f1,Σ1] is biholomorphic to Oqc(Σ1). Furthermore, the complex structure of

Oqc(Σ1) is compatible with the complex structure that the fibers inherit from T̃ (Σ).
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This notion of a rigged Teichmüller space was first defined, in the case of analytic riggings,
by one of the authors in [20], and it was used to obtain a complex Banach manifold structure
on the analytically rigged moduli space. However, in the case of analytic riggings the con-
nection to the complex structure of the infinite-dimensional Teichmüller space of bordered
surfaces can not be made.

From now on, any punctured Riemann surface is assumed to satisfy 2g + 2 − n > 0. We

would now like to demonstrate that T̃WP(Σ) has a natural complex Hilbert manifold structure
which arises from Oqc

WP(Σ), and that this also passes to the rigged Riemann moduli space.
In Section 4, we will use it to construct a complex Hilbert manifold structure on a WP-
class Teichmüller space of a bordered surface. To accomplish these tasks we use a natural
coordinate system developed in [20, 23], which is based on Gardiner-Schiffer variation and

the complex structure on Oqc(Σ). We will refine these coordinates to T̃WP(Σ).
We end this section with a basic result concerning the above definition. Since Σ satisfies

2g + 2− n > 0 we have the following well known theorem [18].

Theorem 3.3. If σ : Σ → Σ is a biholomorphism that is homotopic to the identity then σ
is the identity.

Corollary 3.4. If [Σ, f1,Σ1, φ1] = [Σ, f1,Σ1, φ2] ∈ T̃WP(Σ) then φ1 = φ2.

3.2. Marked families. In this section we collect some standard definitions and facts about
marked holomorphic families of Riemann surfaces and the universality of the Teichmüller
curve. These will play a key role in the construction of an atlas on rigged Teichmüller space.
A full treatment appears in [6], and also in the books [14, 18].

Definition 3.5. A holomorphic family of complex manifolds is a pair of connected complex
manifolds (E,B) together with a surjective holomorphic map π : E → B such that (1) π
is topologically a locally trivial fiber bundle, and (2) π is a split submersion (that is, the
derivative is a surjective map whose kernel is a direct summand).

Definition 3.6. A morphism of holomorphic families from (E ′, B′) and (E,B) is a pair of
holomorphic maps (α, β) with α : B′ → B and β : E ′ → E such that

E ′
β //

π′

��

E

π

��
B′

α // B

commutes, and for each fixed t ∈ B′, the restriction of β to the fiber π′−1(t) is a biholomor-
phism onto π−1(α(t)).

Throughout, (E,B) will be a holomorphic family of Riemann surfaces; that is, each fiber
π−1(t) is a Riemann surface. Moreover, since our trivialization will always be global we
specialize the standard definitions (see [6]) to this case in what follows.

Let Σ be a punctured Riemann surface of type (g, n). This fixed surface Σ will serve as a
model of the fiber.

Definition 3.7.

(1) A global trivialization of (E,B) is a homeomorphism θ : B × Σ → E such that
π(θ(t, x)) = t for all (t, x) ∈ B × Σ.



WEIL-PETERSSON TEICHMÜLLER SPACE 13

(2) A global trivialization θ is a strong trivialization if for fixed x ∈ Σ, t 7→ θ(t, x) is
holomorphic, and for each t ∈ B, x 7→ θ(t, x) is a quasiconformal map from Σ onto
π−1(t).

(3) θ : B×Σ→ E and θ′ : B×Σ→ E are compatible if and only if θ′(t, x) = θ(t, φ(t, x))
where for each fixed t, φ(t, x) : Σ → Σ is a quasiconformal homeomorphism that is
homotopic to the identity rel boundary.

(4) A marking M for π : E → B is an equivalence class of compatible strong trivializa-
tions.

(5) A marked family of Riemann surfaces is a holomorphic family of Riemann surfaces
with a specified marking.

Remark 3.8. Let θ and θ′ be compatible strong trivializations. For each fixed t ∈ B,
[Σ, θ(t, ·), π−1(t)] = [Σ, θ′(t, ·), π−1(t)] in T (Σ) (see Definition 3.1). So a marking specifies a
Teichmüller equivalence class for each t.

We now define the equivalence of marked families.

Definition 3.9. A morphism of marked families from π′ : E ′ → B′ to π : E → B is a pair
of holomorphic maps (α, β) with β : E ′ → E and α : B′ → B such that

(1) (α, β) is a morphism of holomorphic families, and
(2) the markings B′ × Σ→ E given by β(θ′(t, x)) and θ(α(t), x) are compatible.

The second condition says that (α, β) preserves the marking.

Remark 3.10 (relation to Teichmüller equivalence). Define E = {(s, Ys)}s∈B and E ′ =
{(t,Xt)}t∈B′ to be marked families of Riemann surfaces with markings θ(s, x) = (s, gs(x)) and
θ′(t, x) = (t, ft(x)) respectively. Say (α, β) is a morphism of marked families, and define σt by
β(t, y) = (α(t), σt(y)). Then β(θ′(t, x)) = (α(t), σt(ft(x))) and θ(α(t), x) = (α(t), gα(t)(x)).
The condition that (α, β) is a morphism of marked families is simply that σt◦ft is homotopic
rel boundary to gα(t). That is, when s = α(t), [Σ, ft, Xt] = [Σ, gs, Ys] via the biholomorphism
σt : Xt → Ys.

The universal Teichmüller curve, denoted by πT : T (Σ)→ T (Σ), is a marked holomorphic
family of Riemann surfaces with fiber model Σ. The following universal property of T (Σ)
(see [6, 14, 18]) is all that we need for our purposes.

Theorem 3.11 (Universality of the Teichmüller curve). Let π : E → B be a marked holo-
morphic family of Riemann surfaces with fiber model Σ of type (g, n) with 2g−2+n > 0, and
trivialization θ. Then there exists a unique map (α, β) of marked families from π : E → B
to πT : T (Σ)→ T (Σ). Moreover, the canonical “classifying” map α : B → T (Σ) is given by
α(t) = [Σ, θ(t, ·), π−1(t)].

3.3. Schiffer variation. The use of Schiffer variation to construct analytic coordinates on
Teichmüller space by using quasiconformal deformations is due to Gardiner [9] and Nag
[17, 18]. We review the construction in some detail, as it will be used in a crucial way in the
subsequent sections.

Let BR = {z ∈ C : |z| < R}, and for r < R let A(r, R) = {z ∈ C : r < |z| < R} as before.
Choose r and R such that 0 < r < 1 < R. Let Σ be a (possibly punctured) Riemann surface
and ξ : U → C be local holomorphic coordinate on an open connected set U ⊂ Σ such that
BR ⊂ Image(ξ). Let D = ξ−1(D), which we call a parametric disk.
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Define vε : A(r, R) −→ C by vε(z) = z + ε/z where ε ∈ C. For |ε| sufficiently small v
is a biholomorphism onto its image. Let Dε be the interior of the analytic Jordan curve
vε(∂D). We regard Dε as a bordered Riemann surface (with the standard complex structure
inherited from C) with analytic boundary parametrization given by vε : S1 → ∂Dε. We also
have the Riemann surface Σ \ D with the boundary analytically parametrized by ξ−1|S1 :
S1 → ∂(Σ \D).

We now sew Dε and Σ\D along their boundaries by identifying x ∈ ∂(Σ\D) with x′ ∈ ∂Dε

if and only if x′ = (vε ◦ ξ)(x). Let

Σε = (Σ \D) tDε / boundary identification

and we say this Riemann surface is obtained from Σ by Schiffer variation of complex struc-
ture on D. Let

ιε : Σ \D −→ Σε and ιεD : Dε → Σε

be the holomorphic inclusion maps. With a slight abuse of notation we could use the identity
map in place of ιε, however the extra notation will make the following exposition clearer.

Define wε : D → Dε by wε(z) = z + εz. Note that wε is a homeomorphism, and on the
boundary vε = wε. Define the quasiconformal homeomorphism νε : Σ→ Σε by

νε(x) =

{
ιε(x), x ∈ Σ \D
(ιεD ◦ w ◦ ξ)(x), x ∈ D.

So we now have a point [Σ, νε,Σε] ∈ T (Σ) obtained by Schiffer variation of the base point
[Σ, id,Σ].

To get coordinates on T (Σ) we perform Schiffer variation on d disks where d = 3g− 3 +n
is the complex dimension of T (Σ). Let (D1, . . . , Dd) be d disjoint parametric disks on Σ,
where Di = (ξi)

−1(D) for suitably chosen local coordinates ξi. Let D = D1 ∪ · · · ∪ Dd and
let ε = (ε1, . . . , εd) ∈ Cd. Schiffer variation can be performed on the d disks to get a new
surface which we again denote by Σε. The map νε becomes

(3.1) νε(x) =

{
ιε(x), x ∈ Σ \D
(ιεD ◦ wεi ◦ ξi)(x), x ∈ Di , i = 1, . . . , d.

The following theorem is the main result on Schiffer variation [9, 18]. Let Ω ⊂ Cd be an
open neighborhood of 0 such that Schiffer variation is defined for ε ∈ Ω. Define

S : Ω −→ T (Σ)(3.2)

ε 7−→ [Σ, νε,Σε].

Theorem 3.12. Given any d disjoint parametric disks on Σ, it is possible to choose the
local parameters ξi such that on some open neighborhood Ω of 0 ∈ Cn, S : Ω → S(Ω) is a
biholomorphism. That is, the parameters (ε1, . . . , εd) provide local holomorphic coordinates
for Teichmüller space in a neighborhood of [Σ, id,Σ]

It is important to note that we are free to choose the domains Di on which the Schiffer
variation is performed.

By a standard change of base point argument we can use Schiffer variation to produce
a neighborhood of any point [Σ, f,Σ1] ∈ T (Σ). Performing Schiffer variation on Σ1 gives
a neighborhood S(Ω) of [Σ1, id,Σ1] ∈ T (Σ1). Consider the change of base point biholo-
morphism (see [18, Sections 2.3.1 and 3.2.5]) f ∗ : T (Σ1) → T (Σ) given by f ∗([Σ1, g,Σ2] =



WEIL-PETERSSON TEICHMÜLLER SPACE 15

[Σ, g ◦ f,Σ2]. Then f ∗ ◦ S is a biholomorphism onto its image f ∗(S(Ω)) = {[Σ, νε ◦ f,Σε
1]}

which is a neighborhood of [Σ, f,Σ1] ∈ T (Σ).
Thus, denoting f ∗ ◦ S itself by S, the Schiffer variation

S : Ω −→ T (Σ)(3.3)

ε 7−→ [Σ, νε ◦ f,Σε].

produces a neighborhood of [Σ, f,Σ1] ∈ T (Σ).

3.4. Marked Schiffer family. Fix a point [Σ, f,Σ1] ∈ T (Σ). We will show that Schiffer
variation on Σ1 produces a marked holomorphic family of Riemann surfaces with fiber Σε

1

over the point ε and marking νε◦f . Since this construction does not appear in the literature,
we present it here in some detail as it is an essential ingredient in our later proofs. An efficient
way to describe the family is to do the sewing for all ε simultaneously.

For i = 1, . . . , d, let Ωi be connected open neighborhoods of 0 ∈ C such that Ω = Ω1 ×
· · · × Ωd is an open subset of Cd for which Schiffer variation is defined and Theorem 3.12
implies that S : Ω→ S(Ω) ⊂ T (Σ) is a biholomorphism.

Define, for each i = 1, . . . , d,

wi : Ωi × D −→ C× C
(εi, z) 7−→ (εi, w

εi(z)),

vi : Ωi × A1
r −→ C× C

(εi, z) 7−→ (εi, v
εi(z)),

and let

Yi = wi(Ωi × D).

Since wi is a homeomorphism, Yi is open and so inherits a complex manifold structure from
C× C. Note that for fixed εi, {z | (εi, z) ∈ Yi} = Dεi .

With r < 1 as in the construction of Schiffer variation, let Dr
i = ξ−1

i (B(0, r)) and Dr =
Dr

1 ∪ · · · ∪Dr
d. Let

X = Ω× (Σ1 \Dr)

and endow it with the product complex manifold structure. Define the map

ρi : Ω× (Di \Dr
i ) −→ v(Ω× A1

r)

(εi, x) 7−→ (ε, vεi(ξi(x)).

From the definition of vεi it follows directly that ρi is a biholomorphism from an open subset
of X to an open subset of Yi.

Using the standard gluing procedure for complex manifolds (see for example [7, page 170])
we can make the following definition.

Definition 3.13. Let S(Ω, D) be the complex manifold obtained by gluing X to Y1, . . . , Yd
using the biholomorphisms ρ1, . . . , ρd.

The inclusions ιX : X ↪→ S(Ω, D) and ιYi
: Yi ↪→ S(Ω, D) are holomorphic. Moreover,

since r just determines the size of the overlap, S(Ω, D) is independent of r.
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Equivalently, we can think of gluing Ω× (Σ1 \D) and w(Ω×D) using the ρi restricted to
Ω× ∂Di to identify the boundary components. For each fixed ε this gluing is precisely that
used to define Σε

1. So we see that

S(Ω, D) = {(ε, x) : ε ∈ Ω, x ∈ Σε
1}.

Define the projection map

πS : S(Ω, D) −→ Ω

(ε, x) 7−→ ε

and the trivialization

θ : Ω× Σ −→ S(Ω, D)(3.4)

(ε, x) 7−→ (ε, (νε ◦ f)(x)).

It is immediate that πS is onto, holomorphic and defines a topologically trivial bundle.

Definition 3.14. We call πS : S(Ω, D)→ Ω with trivialization θ a marked Schiffer family.

We will have use for explicit charts on S(Ω, D), but only on the part that is disjoint from
the Schiffer variation. Let (U, ζ) be a chart on Σ1 \D. Recall that ιε : Σ1 \D → Σε

1 is the
holomorphic inclusion map. Let

(3.5) Ũ = {(ε, x) | ε ∈ Ω, x ∈ ιε(U)} ⊂ S(Ω, D)

and define

ζ̃ : Ũ −→ C× C(3.6)

(ε, x) 7−→
(
ε, (ζ ◦ (ιε)−1)(x)

)
Then (ζ̃ , Ũ) is a holomorphic chart on S(Ω, D).

Note that with a slight of abuse of notation we could simply write Ũ = Ω× U and define
ζ̃ by (ε, x) 7→ (ε, ζ(x)), but we will refrain from doing so.

Theorem 3.15. A marked Schiffer family is a marked holomorphic family of Riemann
surfaces.

Proof. We must check the conditions in Definitions 3.5 and 3.7.
Because νε is a quasiconformal homeomorphism, θ(ε, z) is a homeomorphism, and for fixed

ε, θ(ε, z) is quasiconformal. Next, we show that for fixed x, θ(ε, x) is holomorphic in ε.

(1) If x ∈ Σ \ f−1(Di) then θ(ε, x) ∈ ιX(X). Let ζ and ζ ′ be a local coordinates in
neighborhoods of x and f(x) respectively, and let z = ζ(x). Use these to form the
product charts on Ω×Σ and X. From the definition of νε (see (3.1)) it follows directly
that in terms of local coordinates θ(ε, x) is the map (ε, z) 7→ (ε, (ζ ′ ◦f ◦ζ−1(z)). Since
the second entry is independent of ε the map is clearly holomorphic in ε.

(2) If x ∈ f−1(Di) then θ(ε, x) ∈ ιYi
(Yi). Let η be a coordinate map on f−1(Di) and

let z = η(x). Use (ε, t) 7→ (ε, ζ(t)) as the product chart on Ω × f−1(Di). Let
y = ξi ◦ f ◦ η−1(z) which is independent of ε. Then in terms of local coordinates, θ
becomes (ε, z) 7→ (ε, wεi(y)). Since wεi(y) = y + εiȳ, it is certainly holomorphic in ε
for fixed y.
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Conditions (1) and (2) of Definition 3.7 are thus satisfied. It remains to prove condition (2)
of Definition 3.5.

Because θ(ε, x) is holomorphic in ε, S(Ω, D) has a holomorphic section though every point.
This implies that πS : S(Ω, D)→ Ω is a holomorphic split submersion (see for example [18,
section 1.6.2], and also [14, Section 6.2] for an alternate definition of marked families).

So θ(ε, z) is a strong trivialization and hence S(Ω, D) is a marked family of Riemann
surfaces. �

We will need the following lemma regarding maps between marked Schiffer families. We
consider two Schiffer families, whose corresponding neighborhoods in Teichmüller space in-
tersect on an open se,t and the morphism between these families.

For i = 1, 2, let π1 : Si(Ωi, Di) → Ωi be marked Schiffer families based at [Σ, fi,Σi]. Let
Si : Ωi → T (Σ) be the corresponding variation maps defined by (3.3), and assume that
S1(Ω1) ∩ S2(Ω2) is non-empty. Let N be any connected component of S1(Ω1) ∩ S2(Ω2), and
let Ω′i = S−1

i (N).
Consider the marked Schiffer families Si(Ω

′
i, Di) = π−1

i (Ω′i) with trivializations θi : Ω′i ×
Σ → Si(Ω

′
i, Di) defined by θi(ε, x) = (ε, (νεi ◦ fi)(x)). For ease of notation we write S ′i =

Si(Ω
′
i, Di).

Recall that throughout we are assuming that Σ is of type (g, n) with 2g − 2 + n > 0.

Lemma 3.16. There is a unique invertible morphism of marked families (α, β) from π1 :
S ′1 → Ω′1 to π2 : S ′2 → Ω′2. In particular, the following hold:

(1) There is a unique map α : Ω′1 → Ω′2 such that [Σ, νε1 ◦ f1,Σ
ε
1] = [Σ, ν

α(ε)
2 ◦ f2,Σ

α(ε)
2 ],

and α is a biholomorphism.

(2) For each ε ∈ Ω′1, there is a unique biholomorphism σε : Σε
1 → Σ

α(ε)
2 realizing the

equivalence in (1).
(3) The function β(ε, z) = (α(ε), σε(z)) is a biholomorphism on π−1

1 (Ω′1) ⊂ S1(Ω1, D1).

Proof. By Theorem 3.11 there are unique mappings of marked families (αi, βi) from πi : S ′i →
Ω′i to πT : T (Σ)→ T (Σ). By Theorem 3.12 and the fact that αi = Si from equation (3.3) we
see that αi is injective. Since βi is injective fiberwise and αi ◦ πi = πT ◦ βi it follows that βi
is injective. So αi and βi are biholomorphisms onto their images since they are holomorphic
and injective functions on finite-dimensional complex spaces.

Let α = α−1
2 ◦ α1 and β = β−1

2 ◦ β1; these are biholomorphisms from Ω′1 → Ω′2 and
S ′1 → S ′2 respectively. Then (α, β) is the unique map of marked families from π1 : S ′1 → Ω′1
to π2 : S ′2 → Ω′2, and has inverse (α−1, β−1).

The proof of (1) is completed by noting that the equation

[Σ, νε1 ◦ f1,Σ
ε
1] = [Σ, ν

α(ε)
2 ◦ f2,Σ

α(ε)
2 ]

is precisely α1(ε) = α2(α(ε)), which is true by the definition of α.
Because β restricted to the fibers is a biholomorphism and α1 ◦ π1 = π2 ◦ β we can write

(as in Remark 3.10) β in the form

β(ε, x) = (α(ε), σε(x))

where σε : Σε
1 → Σ

α(ε)
2 is a biholomorphism.

Since 2g − 2 + n > 0, the uniqueness in (2) follows directly from Theorem 3.3.
We have already proved that β : S ′1 → S ′2 is a biholomorphism and so (3) is proved. �
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Remark 3.17. Part (3) of the above lemma is the reason for introducing the theory of marked
families. Without this theory, it is impossible to prove (or even formulate the notion of)
holomorphicity in ε of the map σε realizing the Teichmüller equivalence. The holomorphicity
in ε is necessary for the proof that the transition functions on the rigged Teichmüller space
are biholomorphisms (Theorem 3.27 below).

3.5. Topology and atlas for the rigged Teichmüller space. We will now give the rigged
Teichmüller space a Hilbert manifold structure.

We begin by defining a base for the topology. Let Σ be a punctured Riemann surface
of type (g, n). We fix a point [Σ, f,Σ1] ∈ T (Σ). Let (ζ, E) be an n-chart on Σ1, let
U ⊂ Oqc

WP × · · · × O
qc
WP be compatible with (ζ, E), and let V = Vζ,E,U (defined in equation

(2.3)).

Definition 3.18. We say that a marked Schiffer family S(Ω, D) is compatible with an n-
chart (ζ, E) if the closure of each disk Di is disjoint from the closure of Ej for all i and
j.

For any punctured Riemann surface Σ′ denote by V(Σ′) the basis of Oqc
WP(Σ′) as in Defi-

nition 2.28.

Lemma 3.19. Let S(Ω, D) be a marked Schiffer family based at [Σ, f,Σ1] and let V ∈ V(Σ1).
If S(Ω, D) is compatible with V then νε(V ) = {νε ◦ φ : φ ∈ V } is an element of V(Σε

1).

Proof. Writing V in terms of its corresponding n-chart (ζ, E) and W ⊂ Oqc
WP × · · · × O

qc
WP,

this is an immediate consequence of the fact that νε is holomorphic on the sets Ei. �

Define the set

F (V, S,∆) = {[Σ, νε ◦ f,Σε
1, φ] : ε ∈ ∆, φ ∈ νε(V )}

where V ∈ V , S = S(Ω, D) is a Schiffer variation compatible with V , and ∆ is a connected
open subset of Ω. The base F consists of such sets.

Definition 3.20. The base for the topology of T̃WP(Σ) is

F = {F (V, S,∆) : S(Ω, D) compatible with V, ∆ ⊆ Ω open and connected}.

It is an immediate consequence of the definition that the restriction of any F ∈ F to a
fiber is open in in the following sense.

Lemma 3.21. Let Σ and F be as above. For any F ∈ F and representative (Σ, f1,Σ1) of
any point [Σ, f1,Σ1] ∈ T (Σ)

{φ ∈ Oqc
WP(Σ1) : [Σ, f1,Σ1, φ] ∈ F}

is an open subset of Oqc
WP(Σ1).

Proof. This follows immediately from Lemma 3.19. �

It is necessary to show that F is indeed a base. This will be accomplished in several steps,
together with the proof that the overlap maps of the charts are biholomorphisms. The charts
are given in the following definition.
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Definition 3.22. For each open set F (V, S,∆) ⊂ T̃WP(Σ) we define the chart

G : ∆× U −→ F (V, S,∆)(3.7)

(ε, ψ) 7−→ [Σ, νε ◦ f1,Σ
ε
1, ν

ε ◦ ζ−1 ◦ ψ].

where U ⊂ (Oqc
WP)n is related to V as in Definition 2.28 and S = S(Ω, D) is compatible with

V .

Lemma 3.23. The map G is a bijection.

Proof. If G(ε1, ψ1) = G(ε1, ψ1) then ε1 = ε2 by Theorem 3.12. Because 2g − 2 + n > 0,
Corollary 3.4 implies ψ1 = ψ2. This proves injectivity. Surjectivity of G follows from the
definition of F (V, S,∆). �

It was shown in [23], that if in the above map Oqc
WP and Oqc

WP(Σ) are replaced by Oqc and
Oqc(Σ), and the corresponding changes are made to the sets Ui and Vi, then these coordinates

can be used to form an atlas on T̃ P (Σ). We need to show the same result in the WP-class
setting.

Remark 3.24. Between here and the end of the proof of Lemma 3.25, we will suppress the
subscripts on n-charts (ζi, Ei) and elements of Oqc

WP(Σ1) to avoid clutter. The subscripts
which remain will distinguish n-charts on different Riemann surfaces.

When clarification is necessary we will use the notation, for example (ζi,j, Ei,j), where the
first index labels the Riemann surface and the second labels the puncture.

We proceed as follows. We first prove two lemmas, whose purpose is to show that in a
neighborhood of any point, the transition functions are defined and holomorphic on some
open set. Once this is established, we show that F is a base, the topology is Hausdorff and
separable, and the charts form a holomorphic atlas.

Some notation is necessary regarding the transition functions. Fix two points [Σ, f1,Σ1]
and [Σ, f2,Σ2] in T (Σ). Let G1 and G2 be two corresponding parametrizations as in (3.7)
above, defined on ∆1 × U1 and ∆2 × U2 respectively and using the two Schiffer families
S1(∆1, D1) and S2(∆2, D2). We assume that the intersection G1(∆1 × U1) ∩G1(∆2 × U2) is

non-empty. From the definitions of T̃WP(Σ) and S it follows that S(∆1)∩S(∆2) is also non-
empty. We follow the notation and setup of Lemma 3.16 and the paragraph immediately
preceding it, with ∆′i = S−1

i (N) replacing Ω′i, where N is any connected component of
S(∆1) ∩ S(∆2).

Recall that in T̃ PWP(Σ), [Σ, g1,Σ1, φ1] = [Σ, g2,Σ2, φ2] if and only if [Σ, g1,Σ1] = [Σ, g2,Σ2]
via the biholomorphism σ : Σ1 → Σ2 and σ ◦ φ1 = φ2. Lemma 3.16 now implies that
G1(ε, ψ) = G2(ε′, ψ′) if and only if ε′ = α(ε) and

ν
α(ε)
2 ◦ ζ−1

2 ◦ ψ′ = σε ◦ νε1 ◦ ζ−1
1 ◦ ψ.

Let

(3.8) H(ε, z) = Hε(z) =
(
ζ2 ◦ (ν

α(ε)
2 )−1 ◦ σε ◦ νε1 ◦ ζ−1

1

)
(z)

which is a function of two complex variables. We also define

G(ε, z) = (α(ε),H(ε, z)).
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Note that this is shorthand for a collection of maps Hj(ε, z) and Gj(ε, z), j = 1, . . . , n, where
j indexes the punctures (cf. Remark 3.24). Define further

H : Ω′1 × (Oqc
WP)n −→ (Oqc

WP)n(3.9)

(ε, ψ) 7−→ Hε ◦ ψ.
The overlap maps can then be written

(3.10) (G−1
2 ◦G1)(ε, ψ) = (α(ε),Hε ◦ ψ) = (α(ε), H(ε, ψ)).

Lemma 3.25. Let [Σ, f1,Σ1] and [Σ, f2,Σ2] ∈ T̃ PWP(Σ) for a punctured Riemann surface Σ.
For i = 1, 2 let Vi be the base for the topology on Oqc

WP(Σi) as in Definition 2.28. Again for
i = 1, 2 let (ζi, Ei) be n-charts on Σi, let Vi ∈ Vi be compatible with the n-charts (ζi, Ei),
and let Si(Ωi, Di) be Schiffer variations compatible with Vi. Finally, for open connected sets
∆i ⊆ Ωi consider the sets F (Vi, S1,∆i) which we assume have non-empty intersection.

Choose any e1 ∈ ∆1 and φ1 ∈ V1 such that [Σ, νe11 ◦ f1,Σ
e1
1 , ν

e1
1 ◦ φ1] ∈ F (V1, S1,∆1) ∩

F (V2, S2,∆2). Then, there exists a ∆ ⊂ S−1
1 (S1(∆1) ∩ S2(∆2)) containing e1, and an open

set E ′1 ⊆ ζ1(E1) containing ζ1 ◦ φ1(D), such that H is holomorphic in ε and z on ∆×E ′1 and
G(ε, z) = (α(ε),H(ε, z)) is a biholomorphism onto G(∆× E ′1).

Proof. Let N be the connected component of S1(∆1) ∩ S2(∆2) that contains S1(e1). For
i = 1, 2, let ∆′i = S−1

i (N),

Eεi
i = νεii (Ei)

and
Aεii = (νεii ◦ φ1)(D).

Note that Aεii ⊂ Eεi
i . By construction ∆′1 contains e1.

Let
Ẽi = {(εi, z) : εi ∈ ∆′i, z ∈ E

εi
i }

and
Ãi = {(εi, z) : εi ∈ ∆′i, z ∈ A

εi
i }.

Both of these sets are open by definition of S(Ωi, Di).
Now by Lemma 3.16 there is a biholomorphism β : S(∆′1, D1)→ S(∆′2, D2) and moreover,

β(Ã1) = Ã2. The last assertion follows from the definition of equivalence in the rigged
Teichmüller space.

Let
C̃ = β−1(Ẽ2) ∩ Ẽ1

and note that Ã1 ⊂ C̃.
Since C̃ is open, so is

J = ζ̃1(C̃) ⊂ ∆′1 × ζ1(E1),

where ζ̃1 is defined in (3.6). Let J ε = {z : (ε, z) ∈ J}. Then

ψ1(D) ⊂ J ε ⊂ ζ1(E1)

for all ε, where ψ1 = ζ1 ◦ φ1. By the definition of C̃, H is defined on J ε.
We claim that there are connected open sets ∆ and E ′ such that the closure of ∆×E ′ is

contained in J , e1 ∈ ∆ and ψ1(D) ⊂ E ′. Since J is open and {e1} × ψ1(D) is compact the
existence of such sets ∆ and E ′ follow from a standard topological argument.



WEIL-PETERSSON TEICHMÜLLER SPACE 21

Since H, and therefore G are defined on J they are defined on ∆×E ′. We will prove that
G is biholomorphic by showing that it is equal to β expressed in terms of local coordinates.
Using the coordinates defined in (3.6), noting that on E ′, νε = ιε, and applying Lemma 3.16,
we have for (ε, z) ∈ ∆× E ′ that

(ζ̃2 ◦ β ◦ ζ̃−1
1 )(ε, z) =

(
α(ε), (ζ2 ◦ (ν

α(ε)
2 )−1 ◦ σε ◦ νε1 ◦ ζ−1

1 )(z)
)

= (α(ε),H(ε, z))

= G(ε, z).

Since β is a biholomorphism we see that on the domain ∆×E ′, G is a biholomorphism and
H is holomorphic. �

Theorem 3.26. With notation as in Lemma 3.25, assume that p = [Σ, νe11 ◦ f1,Σ
e1
1 , ν

e1
1 ◦φ1]

is an arbitrary point in F (V1, S1,∆1)∩ F (V2, S2,∆2). There exists a V ′1 ∈ V1 and a ∆′1 such
that

(1) p ∈ F (V ′1 , S1,∆
′
1) ⊆ F (V1, S1,∆1) ∩ F (V2, S2,∆2)

(2) For all ψ ∈ U ′1 (where U ′1 is associated to V ′1 as in Definition 2.28), ψ(D) is contained
in an open set E ′ satisfying the consequences of Lemma 3.25

(3) G−1
2 ◦G1 is holomorphic on ∆′1 × U ′1.

Proof. By Lemma 3.25, there is an open set ∆′′1×E ′1 such that ζ1 ◦ φ1(D) ⊂ E ′1, e1 ∈ ∆′′1, H is
holomorphic on ∆′′1×E ′1 and G is biholomorphic on ∆′′1×E ′1. This immediately implies that
there is an open set ∆′2×E ′2 ⊂ G(∆′′1×E ′1) such that α(e1) ∈ ∆′2 and for ψ2 = H(e1, ζ1 ◦φ1),

ψ2(D) ⊆ E ′2. Now let W2 = {ψ ∈ Oqc
WP : ψ(D) ⊆ E ′2}. By Theorem 2.24 and Remark 2.35,

W2 ∩ U2 is open in Oqc
WP. Note that H(e1, ζ1 ◦ φ1) ∈ W2 ∩ U2.

Choose a compact set K ⊂ E ′1 which contains ζ1 ◦ φ1(D) in its interior Kint. If we let

W1 = {ψ ∈ Oqc
WP : ψ(D) ⊆ Kint}, then W1 is open by Theorem 2.24. We claim that H is

holomorphic on ∆′1 ×W1. By Hartogs’ theorem (see [16] for a version in a suitably general
setting), it is enough to check holomorphicity separately in ε and ψ. By Lemma 2.5, H is
holomorphic in ε for fixed ψ. On the other hand, by Theorem 2.25, H is holomorphic in ψ
for fixed ε by our careful choice of W1.

In particular, H is continuous and therefore H−1(W2∩U2)∩ (∆′′1× (W1∩U1)) is open and
contains (e1, ζ1 ◦ φ1), hence we may choose an open subset ∆′1 × U ′1 containing (e1, ζ1 ◦ φ1).
Let V ′1 be the element of V1 associated to U ′1. Clearly U ′1 ⊆ U1, and H(∆′1 × U ′1) ⊆ U2

by construction; thus F (V ′1 , S1,∆
′
1) ⊆ F (V1, S1,∆1) ∩ F (V2, S2,∆2) so the first condition is

satisfied. By construction, (2) is also satisfied. Since U ′1 ⊆ W1, H is holomorphic on ∆′1×U ′1
and the fact that α is holomorphic on ∆′ yields that G−1

2 ◦ G1 is holomorphic on ∆′1 × U ′1.
This concludes the proof. �

Theorem 3.27. The set F is a base for a Hausdorff, separable topology on T̃WP(Σ). Fur-

thermore, with the atlas of charts given by (3.7), T̃WP(Σ) is a Hilbert manifold.

Proof. It follows directly from part (1) of Theorem 3.26 that F is a base for a topology
on T̃WP(Σ). From part (3), we have that the inverses of the maps (3.7) form an atlas
with holomorphic transition functions. Thus it remains only to show that this topology is
Hausdorff and separable. We first show that it is Hausdorff.

For i = 1, 2, let pi = [Σ, νei
i ◦ fi,Σ

ei
i , ν

ei
i ◦ φi] be distinct points, in sets F (Vi, Si,∆i). If

F (Vi, Si,∆i) are disjoint, we are done. If not, by Lemma 3.16 setting ∆′i to be the connected
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component of S−1
i (S1(∆1) ∩ S2(∆2)) containing ei, there is a biholomorphism α : ∆′1 → ∆′2

such that [Σ, ν
α(ε)
2 ◦ f2,Σ

α(ε)
2 ] = [Σ, νε1 ◦ f1,Σ

ε
1] for all ε ∈ ∆′1.

There are two cases to consider. If [Σ, ν
α(e1)
2 ◦ f2,Σ

α(e1)
2 ] 6= [Σ, νe22 ◦ f2,Σ

e2
2 ], then one can

find Ω1 ⊂ ∆1 and Ω2 ⊂ ∆2 such that S1(∆1) and S2(∆2) are disjoint and F (Vi, Si,Ωi) still
contains [Σ, νei

1 ◦ f1,Σ
ei
1 , ν

ei
1 ◦ φi] for i = 1, 2. But then F (Vi, Si,Ωi) are disjoint, which takes

care of the first case.
If on the other hand [Σ, ν

α(e1)
2 ◦ f2,Σ

α(e1)
2 ] = [Σ, νe22 ◦ f2,Σ

e2
2 ], then by Theorem 3.26 there

are sets F (V ′1 , S1,Ω1) and F (V ′2 , S1,Ω2) in F (V1, S1,∆1)∩F (V2, S2,∆2) containing p1 and p2

respectively. Thus we may write

p1 = [Σ, νe11 ◦ f1,Σ
e1
1 , ν

e1
1 ◦ ψ1] and p2 = [Σ, νe11 ◦ f1,Σ

e1
1 , ν

e1
1 ◦ ψ2].

For i = 1, 2, let U ′i be the subsets of (Oqc
WP)n associated with V ′i as in Definition 2.28.

Since Oqc
WP is an open subset of a Hilbert space, it is Hausdorff, so there are open sets

Wi in U ′i containing pi for i = 1, 2 and such that W1 ∩ W2 is empty. In that case if V ′′i
are the elements of V associated to Wi, then V ′′1 ∩ V ′′2 is empty. This in turn implies that
F (V ′′1 , S1,Ω1) ∩ F (V ′′2 , S1,Ω2) is empty which proves the claim in the second case.

We now prove that T̃WP(Σ) is separable. Since T (Σ) is a finite dimensional complex
manifold it is, in particular, separable. Choose a countable dense subset A of T (Σ). For
each p = [Σ, f1,Σ1] ∈ A, choose a specific representative (Σ, f1,Σ1). The space Oqc

WP(Σ2)
is second countable and, in particular, it has a countable dense subset Bp(Σ1). Now if
(Σ, f2,Σ2) is any other representative, there exists a unique biholomorphism σ : Σ1 → Σ2 (if
σ1 is another such biholomorphism, since by hypothesis σ−1

1 ◦ σ is homotopic to the identity
and 2g − 2 + n > 0, it follows from Theorem 3.3 that σ−1

1 ◦ σ is the identity). We set

Bp(Σ2) = {(σ ◦ φ1, . . . , σ ◦ φn) : (φ1, . . . , φn) ∈ Bp(Σ1)} .
This is easily seen to be itself a countable dense set in Oqc

WP(Σ2) and it is not hard to see
that

Υ = {[Σ, f1,Σ1, ψ1] : [Σ, f1,Σ1] ∈ A, ψ1 ∈ Bp(Σ1)}
is well-defined. We will show that it is dense. Note that for any fixed [Σ, f1,Σ1], the set of
[Σ, f1,Σ1, ψ1] ∈ Υ is entirely determined by any particular representative (Σ, f1,Σ1), and so
this is a countable set.

Let F (V, S,∆) ∈ F . Since A is dense, there is some [Σ, f2,Σ2] ∈ A ∩ S(∆). For a specific
representative (Σ, f2,Σ2) there is a ψ2 ∈ Oqc

WP(Σ2) such that [Σ, f2,Σ2, ψ2] ∈ F (V, S,∆). By
Lemma 3.21 the set of points in F over [Σ, f2,Σ2] is open. Thus since Bp(Σ2) is dense in
Oqc

WP(Σ2) there is a ψ3 ∈ Bp(Σ2) such that [Σ, f2,Σ2, ψ3] ∈ F . By definition [Σ, f2,Σ2, ψ3] ∈
Υ, which completes the proof. �

Remark 3.28. It can be shown that T̃WP(Σ) is second countable. The proof involves somewhat
tedious notational difficulties, so we only give a sketch of the proof. No results in this paper

depend on second countability of T̃WP(Σ).
Fix a countable basis O for Oqc

WP. For any [Σ, f1,Σ1] ∈ A, choose a representative
(Σ, f1,Σ1), and fix the following objects. Let C(Σ1) be a countable collection of n-charts
on Σ1 constructed as in the proof of Theorem 2.29. Let Vc(Σ1) be the countable dense sub-
set of V(Σ1) corresponding to O and C(Σ1) as in the proof of Theorem 2.29. Finally, fix a
countable base B(Σ1) of open sets in Σ1.

Now if (Σ, f2,Σ2) is any other representative, there is a unique biholomorphism σ :
Σ1 → Σ2 as in the proof of Theorem 3.27. Transfer each of the preceding objects to Σ2
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by composition with σ in the appropriate way; for example, C(Σ2) is the set of n-charts
(ζ1 ◦ σ−1, σ(E1), . . . , ζn ◦ σ−1, σ(En)) and so on. Finally fix a countable base D of Cn (for
example, the set of discs of rational radius centered at rational points).

We now define the subset Fc of F to be the set of F (V, S,∆) ∈ F such that

(1) the variation S(Ω) is based at a point [Σ, f1,Σ1] ∈ A
(2) S(Ω) is compatible with some fixed n-chart in C(Σ1)
(3) Ω and ∆ are both in D× · · · ×D
(4) V ∈ V(Σ1).

The set Fc is countable by construction, and does not depend on the choice of representative.
It can be shown with some work that Fc is a base compatible with F .

3.6. Compatibility with the non-WP rigged Teichmüller space. In [21] the following
rigged Teichmüller space was defined.

Definition 3.29. Let T̃ (Σ) be defined by replacing Oqc
WP(Σ1) with Oqc(Σ1) in Definition 3.2.

It was shown in [22] that T̃ (Σ) is a complex Banach manifold with charts as in Definition
3.22 with U ⊂ (Oqc)n, and Oqc replacing Oqc

WP in all the preceding definitions and construc-
tions. Furthermore, the complex structure on Oqc is given by the embedding χ defined by

(2.2). We use the same notation for the charts and constructions on T̃ (Σ) as for T̃WP(Σ)
without further comment.

The complex structures on T̃WP(Σ) and T̃ (Σ) are compatible in the following sense.

Theorem 3.30. The inclusion map IT : T̃WP(Σ)→ T̃ (Σ) is holomorphic.

Proof. Choose any point [Σ, f,Σ∗, φ] ∈ T̃WP(Σ). There is a parametrization G : Ω × U →
T̃ (Σ) onto a neighborhood of this point (see Definition 3.22). We choose U small enough

that νε is holomorphic on φ(D) for all φ ∈ U .
Let W = χn(U) where χn : Oqc × · · · × Oqc →

⊕n(A∞1 (D)⊕ C) is defined by

χn(φ1, . . . , φn) = (χ(φ1), . . . , χ(φn)).

Define F : Ω×W → T̃ (Σ) by

F = G ◦ (id, (χn)−1)

where id is the identity map on Ω. These are coordinates on T̃ (Σ).
Let WWP = W ∩ Oqc

WP = ι−1(W ) (recall that ι is the inclusion map of Oqc
WP in Oqc). The

set WWP is open by Theorem 2.3. We further have that F (Ω ×WWP) = T̃WP ∩W . To see
this note that F (Ω×WWP) = G(Ω× (χn)−1(WWP)). By definition νε ◦ φ ∈ Oqc

WP(Σ) if and

only if for a parameter η : A → C defined on an open neighborhood A of νε(φ(D)) it holds
that η ◦ νε ◦ φ ∈ Oqc

WP. This holds if and only if φ ∈ Oqc
WP since νε is holomorphic on a

neighborhood of φ(D).
It follows from Theorem 2.24 that F−1◦IT◦F is holomorphic. Since F are local coordinates,

IT is holomorphic on the image of F . Since coordinates of the form F cover T̃ (Σ), this proves
the theorem. �

Note that this does not imply that T̃WP(Σ) is a complex submanifold of T̃ (Σ).



24 DAVID RADNELL, ERIC SCHIPPERS, AND WOLFGANG STAUBACH

4. A WP-class Teichmüller space of bordered surfaces

We are at last in a position to define the WP-class Teichmüller space of a bordered surface
and demonstrate that it has a natural complex Hilbert manifold structure. In Section 4.1 we
define the WP-class Teichmüller space TWP(ΣB) of a bordered surface ΣB, and define some
“modular groups” which act on it. In Section 4.2 we show how to obtain a punctured surface
by sewing “caps” onto the bordered surface using the riggings. It is also demonstrated that
sewing on caps takes the WP-class Teichmüller space into the WP-class rigged Teichmüller

space T̃WP(Σ). In Section 4.3 we prove that the WP-class Teichmüller space of bordered
surfaces is a Hilbert manifold. We do this by showing that the WP-class rigged Teichmüller

space T̃WP(Σ) is a quotient of TWP(ΣB) by a properly discontinuous, fixed point free group

of local homeomorphisms, and passing the charts on T̃WP(Σ) upwards. Finally, in Section
4.4 we show that the rigged moduli space of Friedan and Shenker is a Hilbert manifold. This
follows from the fact that the rigged moduli space is a quotient of TWP(ΣB) by a properly
discontinuous fixed-point free group of biholomorphisms.

4.1. Definition of the WP-class Teichmüller space and modular groups. The reader
is referred to Section 2.2 for some of the notation and definitions used below.

We now define the WP-class Teichmüller space of a bordered Riemann surface which is
obtained by replacing the quasiconformal marking maps in the usual Teichmüller space (see
Definition 3.1) with WP-class quasiconformal maps.

Definition 4.1. Fix a bordered Riemann surface ΣB of type (g, n). Let

TWP(ΣB) = {(ΣB, f,ΣB
1 )}/ ∼

where ΣB
1 is a bordered Riemann surface of the same type, f ∈ QC0(ΣB,ΣB

1 ), and two triples
(ΣB, fi,Σ

B
i ), i = 1, 2 are equivalent if there is a biholomorphism σ : ΣB

1 → ΣB
2 such that

f−1
2 ◦ σ ◦ f1 is homotopic to the identity rel boundary.
The space TWP(ΣB) is called the WP-class Teichmüller space and its elements are denoted

by equivalence classes of the form [ΣB, f1,Σ
B
1 ].

An important ingredient in the construction of the complex Hilbert manifold structure
is a kind of modular group (or mapping class group). To distinguish between the different
possible boundary condition we use some slightly non-standard notation following [21]; we
recall the definitions here.

Let ΣB be a bordered Riemann surface and QCI(ΣB) denote the set of quasiconformal
maps from ΣB onto ΣB which are the identity on the boundary. This is a group which acts on
the marking maps by right composition. Let QCIn(ΣB) denote the subset of QCI(ΣB) which
are homotopic to the identity rel boundary (the subscript n stands for “null-homotopic”).

Definition 4.2. Let PModI(ΣB) = QCI(ΣB)/ ∼ where two elements f and g of QCI(ΣB)
are equivalent (f ∼ g) if and only if f ◦ g−1 ∈ QCIn(Σ).

The “P” stands for “pure”, which means that the mappings preserve the ordering of the
boundary components, and “I” stands for “identity”.

There is a natural action of PModI(ΣB) on T (ΣB) by right composition, namely

(4.1) [ρ][ΣB, f,ΣB
1 ] = [ΣB, f ◦ ρ,ΣB

1 ].
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This is independent of the choice of representative ρ ∈ QCI(ΣB) of [ρ] ∈ PModI(ΣB). It is a
standard fact that PModI(ΣB) is finitely generated by Dehn twists. Using these twists we
can define two natural subgroups of PModI(ΣB) (see [21] for details).

Definition 4.3. Let ΣB be a bordered Riemann surface. Let DB(ΣB) be the subgroup of
PModI(ΣB) generated by Dehn twists around simple closed curves Σ which are homotopic
to a boundary curve. Let DI(ΣB) be the subgroup of PModI(ΣB) generated by Dehn twists
around simple closed curves in ΣB which are neither homotopic to a boundary curve nor
null-homotopic.

Here “B” stands for “boundary” and “I” stands for “internal”.
The next Lemma implies that we can consider PModI(ΣB) and DB(ΣB) as acting on

TWP(ΣB).

Lemma 4.4. Every element of QCI(ΣB) is in QC0(ΣB,ΣB). Thus, the group action of
PModI(ΣB) on T (ΣB) preserves TWP(ΣB).

Proof. The first statement follows from Definition 2.18, and Definition 2.14 with H1 = H2.
The second statement follows from Proposition 2.19. �

4.2. Sewing on caps. Given a bordered Riemann surface ΣB together with quasisymmetric
parametrizations of its boundaries by the circle, one can sew on copies of the punctured disk
to obtain a punctured Riemann surface Σ. The collection of parametrizations extend to
an element of Oqc(Σ). In [21], two of the authors showed that this operation can be used

to exhibit a natural correspondence between the rigged Teichmüller space T̃ (Σ) and the
Teichmüller space T (ΣB), and showed in [23] that this results in a natural fiber structure
on T (ΣB). We will be using this fiber structure as the principle framework for constructing
the Hilbert manifold structure on TWP(ΣB). It is thus necessary to describe sewing on caps
here, in the setting of WP-class quasisymmetries.

Definition 4.5. Let ΣB be a bordered Riemann surface with boundary curves Ci, i =
1, . . . , n. The riggings of ΣB is the collection Rig(ΣB) of n-tuples ψ = (ψ1, . . . , ψn) such
that ψi ∈ QS(S1, Ci). The WP-class riggings is the collection RigWP(ΣB) of n-tuples ψ =
(ψ1, . . . , ψn) such that ψi ∈ QSWP(S1, Ci)

Let ΣB be a fixed bordered Riemann surface of type (g, n) say, and ψ ∈ Rig(ΣB). Let D0

denote the punctured unit disk D\{0}. We obtain a new topological space

(4.2) Σ = ΣB t D0 t · · · t D0/ ∼ .

Here we treat the n copies of D0 as distinct and ordered, and two points p and q are
equivalent(p ∼ q) if p is in the boundary of the ith disk, q is in the ith boundary Ci,
and q = ψi(p). By [21, Theorems 3.2, 3.3] this topological space has a unique complex
structure which is compatible with the complex structures on ΣB and each copy of D0. We
will call the image of a boundary curve in Σ under inclusion (which is also the image of ∂D
under inclusion) a seam. We will call the copy of each disk in Σ a cap. Finally, we will
denote equation (4.2) by

Σ = ΣB#ψDn
0

to emphasize the underlying element of Rig(ΣB) used to sew.
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For each i = 1, . . . , n the map ψi can be extended to a map ψ̃i : D0 → Σ defined by

(4.3) ψ̃i(z) =

{
ψ(z), for z ∈ ∂D
z, for z ∈ D.

Note that ψ̃i is well defined and continuous because the map ψi is used to identify ∂D with
Ci. Moreover, ψ̃ is holomorphic on D0. It is important to keep in mind that if the seam in
Σ is viewed as ∂D then in fact ψ̃i is also the identity on ∂D.

Remark 4.6. The complex structure on the sewn surface is easily described in terms of
conformal welding. Choose a seam Ci and let H be a collar chart (see Definition 2.13) with
respect to Ci with domain A say. We have that H ◦ ψi is in QS(S1). Let F : D → C
and G : D∗ → C be the unique holomorphic welding maps such that G−1 ◦ F = H ◦ ψi
when restricted to S1, F (0) = 0, G(∞) = ∞ and G′(∞) = 1. Note that F and G have
quasiconformal extensions to C and C respectively.

Let ζi be the continuous map on A ∪ ψ̃i(D) defined by

(4.4) ζi =

{
F ◦ ψ̃−1

i on ψ̃(D)

G ◦H on A.

It is easily checked that there is such a continuous extension. Since ζi is 0-quasiconformal
on ψ̃i(D) and A, by removability of quasicircles [15, V.3] ζi is 0-quasiconformal (that is,

holomorphic and one-to-one), on A ∪ ψ̃i(D). Thus ζ is a local coordinate on Σ containing
the closure of the cap.

The crucial fact about the extension ψ̃ = (ψ̃1, . . . , ψ̃n) is that it is in Oqc
WP(Σ). In fact we

have the following proposition.

Proposition 4.7. Let ΣB be a bordered Riemann surface, and ψ = (ψ1, . . . , ψn) be an

element of QS(S1,ΣB). Let Σ = ΣB#ψDn
0 and ψ̃ = (ψ̃1, . . . , ψ̃n) be the n-tuple of holomorphic

extensions to D0. Then ψ ∈ RigWP(ΣB) if and only if ψ̃ ∈ Oqc
WP(Σ).

Proof. Let H be a collar chart with respect to the ith boundary curve Ci, and let F , G and
ζi be as in Remark 4.6. By definition ψi ∈ QSWP(S1, Ci) if and only if H ◦ ψi ∈ QSWP(S1)

which holds if and only if the welding map F is in Oqc
WP. Since F = ζ ◦ ψ̃i this proves the

claim. �

The following Proposition is a consequence of Proposition 2.20 and Theorem 2.10.

Proposition 4.8. Let ΣB
1 and ΣB

2 be bordered Riemann surfaces, and let τ ∈ RigWP(ΣB
1 ).

Then f ∈ QC0(ΣB
1 ,Σ

B
2 ) if and only if f ◦ τ ∈ RigWP(ΣB

2 ).

We now have enough tools to describe the relation between TWP(ΣB) and T̃WP(Σ).

Definition 4.9. Let ΣB be a bordered Riemann surface, let τ ∈ RigWP(Σ) be a fixed rigging,
and let Σ = ΣB#τDn

0 . We define

Π : T (ΣB) −→ T̃ (Σ)

[ΣB, f,ΣB
1 ] 7−→ [Σ, f̃ ,Σ1, f̃ ◦ τ̃ ].
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where τ̃ is the extension defined by (4.3),

(4.5) f̃(z) =

{
f(z), z ∈ ΣB

z, z ∈ cap,

and Σ1 = ΣB
1 #f◦τDn

0 is the Riemann surface obtained by sewing caps onto ΣB
1 using f ◦ τ .

The map f̃ is quasiconformal, since it is quasiconformal on ΣB and the cap, and is con-
tinuous on the seam [15, V.3].

Remark 4.10. If f̃ ◦ τ denotes the holomorphic extension of f ◦ τ as in equation (4.3), then

f̃ ◦ τ = f̃ ◦ τ̃ .

It was shown in [21] that Π is invariant under the action of DB, and in fact

Π([ΣB, f,ΣB
1 ]) = Π([ΣB, f2,Σ

B
2 ])⇐⇒ [ΣB, f2,Σ

B
2 ] = [ρ][ΣB, f1,Σ

B
1 ]

for some [ρ] ∈ DB. (The reader is warned that the direction of the riggings in [21] is opposite

to the convention used here). Thus T̃ (Σ) = T (ΣB)/DB as sets. Furthermore, the group
action by DB is properly discontinuous and fixed point free, and the map Π is holomorphic

with local holomorphic inverses. Thus T̃ (Σ) inherits a complex structure from T (ΣB).
On the other hand, in the WP-class setting, instead of having a complex structure on

Teichmüller space in the first place, we are trying to construct one. In the next section, we

will reverse the argument above and lift the complex Hilbert manifold structure on T̃WP(Σ)
to TWP(ΣB). To this end we need the following facts.

Proposition 4.11. Let p = [ΣB, f,ΣB
1 ] ∈ T (ΣB). Then p ∈ TWP(ΣB) if and only if Π(p) ∈

T̃WP(Σ).

Proof. Since τ ∈ RigWP(ΣB), f ∈ QC0(ΣB,ΣB
1 ) if and only if f ◦ τ ∈ RigWP(ΣB

1 ) by Propo-

sition 4.8. And this holds if and only if f̃ ◦ τ ∈ Oqc
WP(Σ1) by Proposition 4.7. By Remark

4.10, f̃ ◦ τ̃ ∈ Oqc
WP(Σ1) which proves the claim. �

We now define the map ΠWP by

ΠWP = Π|TWP(ΣB),

and as a result of this proposition we have

(4.6) ΠWP : TWP(ΣB) −→ T̃WP(Σ).

Proposition 4.12. The action of DB is fixed point free, and for [ΣB, fi,Σ
B
i ] ∈ TWP(ΣB),

i = 1, 2, ΠWP([ΣB, f1,Σ
B
1 ]) = ΠWP([ΣB, f2,Σ

B
2 ]) if and only if there is a [ρ] ∈ DB such that

[ρ][ΣB, f1,Σ
B
1 ] = [ΣB, f2,Σ

B
2 ]. The map Π : TWP(ΣB) → T̃WP(Σ) is onto and thus, as sets,

TWP(ΣB)/DB and T̃WP(Σ) are in one-to-one correspondence.

Proof. These claims are all true in the non-WP setting [21, Lemma 5.1, Theorem 5.6]. Thus
by Proposition 4.11 they are true in the WP-class setting. �
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4.3. Complex Hilbert manifold structure on WP-class Teichmüller space. Next
we describe how to construct the complex structure on TWP(ΣB). Let ΣB be a bordered
Riemann surface, and let τ ∈ RigWP(ΣB). Let Σ be the Riemann surface obtained by sewing
on caps via τ as in the previous section.

We define a base B for a topology on TWP(ΣB) as follows. Recall that F is the base for

T̃WP(Σ) (Definition 3.20).

Definition 4.13. A set B ∈ B if and only if

(1) ΠWP(B) ∈ F
(2) ΠWP is one-to-one on B.

Theorem 4.14. The set B is a base. With the topology corresponding to B, T̃WP(Σ) has the
quotient topology with respect to ΠWP and DB is properly discontinuous.

Proof. Let x ∈ TWP(ΣB). We show that there is a B ∈ B containing x. There is a neighbor-

hood U of x in T (ΣB) on which Π is one-to-one [21]. Let U ′ = Π(U); this is open in T̃ (Σ)

[21]. By Theorem 3.30, the set U ′ ∩ T̃WP(Σ) is open in T̃WP(Σ). Thus there is an element

F ⊂ U ′ ∩ T̃WP(Σ) of the base F which contains Π(x). Since Π|U is invertible, we can set

B = (Π|U)−1 (F ), and B is in B and contains x.
Next, fix q ∈ TWP(ΣB) and let B1, B2 ∈ B contain q. We show that the intersection

contains an element of B. Let U ⊂ ΠWP(B1) ∩ ΠWP(B2) be a set in F containing ΠWP(q).

Set B3 =
(

ΠWP|B1

)−1
(U) ⊂ B1 ∩ B2. We then have that ΠWP is one-to-one on B3 (since

B3 ⊂ B1) and ΠWP(B3) = U . So B3 ∈ B. Thus B is a base.

Now we show that T̃WP(Σ) has the quotient topology with respect to ΠWP. Let U be

open in T̃WP(Σ) and let x ∈ ΠWP
−1(U). There is a Bx ∈ B containing x such that ΠWP is

one-to-one on Bx, and ΠWP(Bx) is open and in F . Since ΠWP(Bx)∩U is open and non-empty
(it contains ΠWP(x)), there is a Fx ∈ F such that ΠWP(x) ∈ Fx and Fx ⊂ ΠWP(Bx) ∩ U .

By definition B̃x =
(

ΠWP|Bx

)−1
(Fx) ∈ B. By construction x ∈ B̃x and B̃x is open and

contained in U . Since x was arbitrary, ΠWP
−1(U) is open.

Let U ∈ T̃WP(Σ) be such that ΠWP
−1(U) is open. Let x ∈ U and y ∈ ΠWP

−1(U) be such
that ΠWP(y) = x. There is a By ∈ B such that y ∈ By ⊂ ΠWP

−1(U). So ΠWP(By) ⊂ U and
x ∈ ΠWP(By). Since By is in B, ΠWP(By) ∈ F , so ΠWP(By) is open. Since x was arbitrary,

U is open. This completes the proof that T̃WP(Σ) has the quotient topology.
Finally, we show that DB acts properly discontinuously on TWP(ΣB). Let x ∈ TWP(ΣB).

By [21, Lemma 5.2], DB acts properly discontinuously on T (ΣB) in its topology. Thus there
is an open set U ⊂ T (ΣB) containing x such that g(U) ∩ U is empty for all g ∈ DB, and on

which Π is one-to-one. Furthermore, Π(U) is open in T̃ (Σ) since Π is a local homeomorphism

[21]. By Theorem 3.30, Π(U) ∩ T̃WP(Σ) is open in T̃WP(Σ), so there exists an F ∈ F such

that F ⊂ Π(U)∩ T̃WP(Σ) and Π(x) ∈ F (note that Π(x) ∈ T̃WP(Σ) by Proposition 4.11). So
W = (Π|U)−1 (F ) is in B by definition, and contains x. In particular W is open, and since
W ⊂ U by construction, g(W ) ∩W is empty for all g ∈ DB. This completes the proof. �

Corollary 4.15. With the topology defined by B, TWP(ΣB) is Hausdorff and separable.

Proof. Let x, y ∈ TWP(ΣB), x 6= y. If ΠWP(x) 6= ΠWP(y), then since T̃WP(Σ) is Hausdorff
by Theorem 3.27, there are disjoint open sets Fx, Fy ∈ F such that ΠWP(x) ∈ Fx and
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ΠWP(y) ∈ Fy. Since B is a base there are sets Bx, By ∈ B such that x ∈ Bx, y ∈ By,
ΠWP(Bx) ⊂ Fx and ΠWP(By) ⊂ Fy. Thus Bx and By are disjoint.

Now assume that ΠWP(x) = ΠWP(y). Thus there is a non-trivial [ρ] ∈ DB such that
[ρ]x = y. Since by Theorem 4.14 DB acts properly discontinuously there is an open set V
containing x such that [ρ]V ∩ V is empty; [ρ]V is open and contains y. This completes the
proof that TWP(ΣB) is Hausdorff.

To see that TWP(ΣB) is separable, let A be a countable dense subset of T̃WP(Σ). Define
B = {p ∈ TWP(ΣB) : Π(p) ∈ A}. Since DB is countable, B is countable. To see that B is
dense, observe that if U is open in TWP(ΣB) then, since DB acts properly discontinuously by
Theorem 4.14, there is a V ⊆ U on which Π is a homeomorphism onto its image. So there is
a q ∈ A∩Π(V ), and thus for a local inverse Π−1 on Π(V ) we can set p = Π−1(q) ∈ V ∩B ⊆
U ∩B. This completes the proof. �

Remark 4.16. It can also be shown that TWP(ΣB) is second countable. To see this, let F ′
be a countable base for T̃WP(Σ). Such a base exists by Remark 3.28. Let B′ = {B ∈ B :
ΠWP(B) ∈ F ′}. It is elementary to verify that B′ is a base. The fact that B′ is countable
follows from the facts that F ′ is countable and DB is countable. Indeed, for each element
F of F ′ we can choose an element BF of B′. Each B in B′ is [ρ]BF for some F ∈ F ′ and
ρ ∈ DB.

Using this base, we now define the charts on TWP(ΣB) that will give it a complex Hilbert
space structure. For any x ∈ TWP(ΣB), let B be in the base B; therefore F = Π(B) is

in the base F of T̃WP(Σ) (see Definition 3.20). From Definition 3.22 there is the chart
G−1 : F → Cd⊗ (Oqc

WP)n, where d = 3g−3+n is the dimension of T (Σ) and n is the number
of boundary curves of ΣB.

Definition 4.17 (Charts for TWP(ΣB)). Given x ∈ B ⊂ TWP(ΣB) as above, we define the
chart

S : B −→ Cd ⊗ (Oqc
WP)n

by S = G−1 ◦ ΠWP.

Note that to get a true chart into a Hilbert space we need to compose S with maps
χ : Oqc

WP → A2
1(D)⊕ C (see (2.2) and Theorem 2.3) as in the proof of Theorem 3.30.

Theorem 4.18. The WP-class Teichmüller space TWP(ΣB) with charts given in the above
definition is a complex Hilbert manifold. With this given complex structure, ΠWP is locally
biholomorphic in the sense that for every point x ∈ TWP(ΣB) there is a neighborhood U of x
such that ΠWP restricted to U is a biholomorphism onto its image.

Proof. By Corollary 4.15, we need only to show that TWP(ΣB) is locally homeomorphic to
a Hilbert space, and exhibit an atlas of charts with holomorphic transition functions. Since
Definition 4.17 defines a chart for any x ∈ TWP(ΣB), the set of such charts clearly covers
TWP(ΣB). The maps S are clearly homeomorphisms, since G’s are biholomorphisms by
Theorem 3.27 and ΠWP’s are local homeomorphisms by the definition of the topology on

T̃WP(Σ).
Assume that two such charts (S,B) and (S ′, B′) have overlapping domains. We show that

S ′ ◦S−1 is holomorphic on B ∩B′. Let x ∈ B ∩B′. Since B is a base, there is a B1 ∈ B ∩B′
containing x. So Π is one-to-one on B1; note also that the determination of Π−1 on Π(B1)
agrees with those on Π(B) and Π(B′). So S ′ ◦ S−1 = (G′)−1 ◦ Π ◦Π−1 ◦G = (G′)−1 ◦ G−1

which is holomorphic by Theorem 3.27. The same proof applies to S ◦ S ′−1. �
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The construction of the Hilbert manifold structure on TWP(ΣB) made use of an arbitrary
choice of a base rigging τ ∈ RigWP(ΣB), but in fact the resulting complex structure is
independent of this choice. We will show a slightly stronger result. If one considers a
base Riemann surface together with a base rigging (ΣB

b , τb) to define a base point, then the
change of base point to another such pair (ΣB

a , τa) is a biholomorphism. We proceed by first

examining the change of base point map for T̃WP(Σ).
Fix two punctured Riemann surfaces Σa and Σb of the same topological type, and let

α : Σa → Σb be a quasiconformal map. The change of base point map α∗ is defined by

α∗ : T̃WP(Σb) −→ T̃WP(Σa)(4.7)

[Σb, g,Σ1, φ] 7−→ [Σa, g ◦ α,Σ1, φ]

This is completely analogous to the usual change of base point biholomorphism for the
Teichmüller space T (Σ) (see the paragraph following Theorem 3.12). From the general
definition of the Schiffer variation map in (3.3), it is worth noting that the coordinates for

T̃WP(ΣWP) as defined in (3.7) actually have this change of base point biholomorphism built
in. From this observation we easily obtain the following theorem.

Theorem 4.19. The change of base point map in (4.7) is a biholomorphism.

Proof. The map α∗ has inverse (α∗)−1 = (α−1)∗ and hence is a bijection. Consider the
points p = [Σb, g,Σ1, φ] and q = α∗(p) = [Σa, g ◦ α,Σ1, φ]. One can choose coordinates, as
in equation (3.7), for neighborhoods of p and q which use the same Schiffer variation on Σ1,
and thus the same map νε. In terms of these local coordinates, the map α∗ is the identity
map and so is certainly holomorphic. The same argument shows that (α−1)∗ is holomorphic
and hence α∗ is biholomorphic.

�

The next task is to relate the preceding change of base point map to the one between
bordered surfaces. Let ΣB

b and ΣB
a be bordered Riemann surfaces of type (g, n) and fix

riggings τb ∈ RigWP(ΣB
b ) and τa ∈ RigWP(ΣB

a ). Then there exists ρ ∈ QC0(ΣB
a ,Σ

B
b ) such

that ρ ◦ τa = τb. In fact one can prove a stronger statement [21, Corollary 4.7 and Lemma
4.17]: Given any quasiconformal map ρ′ : ΣB

a → ΣB
b , there exists ρ ∈ QC0(ΣB

a ,Σ
B
b ) such that

ρ◦τa = τb and ρ is homotopic (not rel boundary) to ρ′. The map ρ′ is obtained by deforming
ρ in a neighborhood of the boundary curves so as to have the required boundary values.

For such a ρ, define the change of base point map

ρ∗ : TBWP(ΣB
b ) −→ TBWP(ΣB

a )(4.8)

[ΣB
b , f,Σ

B
1 ] 7−→ [ΣB

a , f ◦ ρ,ΣB
1 ]

which is just the usual change of base point map restricted to the WP-class Teichmüller
space, together with the added condition of compatibility with the fixed base riggings.

Let Σb and Σa be the punctured surfaces obtained from ΣB
b and ΣB

a by sewing on caps via
τb and τa respectively. Given ρ as above we have its quasiconformal extension ρ̃ : Σa → Σb

defined by

ρ̃ =

{
ρ, on ΣB

a

id, on D

as in (4.5). Let ρ̃∗ be the change of base point biholomorphism as in (4.7).
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Lemma 4.20. Let (ΣB
b , τb), (ΣB

a , τa), ρ, ρ∗, ρ̃ and ρ̃∗ be as above. Then the diagram

TBWP(ΣB
b )

ρ∗ //

ΠWP

��

TBWP(ΣB
a )

ΠWP

��

T̃WP(Σb)
ρ̃∗ // T̃WP(Σa)

commutes.

Proof. Let [ΣB
b , f,Σ

B
1 ] ∈ TBWP(ΣB

b ). We have that

ΠWP ◦ ρ∗([ΣB
b , f,Σ

B
1 ]) = ΠWP([ΣB

a , f ◦ ρ,ΣB
1 ])

= [ΣB
a #τaD, f̃ ◦ ρ,ΣB

1 #f◦ρ◦τaD, ˜f ◦ ρ ◦ τa]

= [ΣB
a #τaD, f̃ ◦ ρ,ΣB

1 #f◦τbD, f̃ ◦ τb]

= [Σa, f̃ ◦ ρ,Σ1, f̃ ◦ τb]

since ρ ◦ τa = τb. On the other hand

ρ̃∗ ◦ ΠWP([ΣB
b , f,Σ

B
1 ]) = ρ̃∗([ΣB

b #τbD, f̃ ,Σ
B
1 #f◦τbD, f̃ ◦ τb]) = [Σb, f̃ ◦ ρ̃,Σ1, f̃ ◦ τb].

The claim follows from the fact that f̃ ◦ ρ = f̃ ◦ ρ̃ (Remark 4.10). �

Theorem 4.18, Theorem 4.19, and Lemma 4.20 immediately imply the following theorem.

Theorem 4.21. Let (ΣB
b , τb) and (ΣB

a , τa) be a pair of rigged bordered Riemann surfaces,
with τb ∈ RigWP(ΣB

b ) and τa ∈ RigWP(ΣB
a ). Let ρ ∈ QC0(ΣB

1 ,Σ
B
b ) satisfy ρ ◦ τa = τb. Then

the change of base point map ρ∗ given by equation (4.8) is a biholomorphism.

Corollary 4.22. The complex Hilbert manifold structure on TWP(ΣB) is independent of the
choice of rigging τ ∈ QSWP(ΣB).

Proof. Apply Theorem 4.21 with ΣB
b = ΣB

a = ΣB. �

This immediately implies

Corollary 4.23. Let ρ ∈ QC0(ΣB
a ,Σ

B
b ). The change of base point map ρ∗ : TBWP(ΣB

b ) −→
TBWP(ΣB

a ) is a biholomorphism.

Finally, the following theorem shows that the complex structure of the WP-class Te-
ichmüller space is compatible with the standard complex structure.

Theorem 4.24. The inclusion map from TWP(ΣB) to T (ΣB) is holomorphic.

Proof. Since Π has local holomorphic inverses the inclusion map from TWP(ΣB) to T (ΣB)

can be locally written as Π−1 ◦ι ◦ ΠWP where ι : T̃WP(Σ)→ T̃ (Σ) is inclusion. The theorem
follows from the facts that Π−1 and ΠWP are holomorphic and ι is holomorphic by Theorem
3.30. �
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4.4. Rigged moduli space is a Hilbert manifold. In this section we show that the
rigged moduli space of conformal field theory originating with Friedan and Shenker [8], with
riggings chosen as in this paper, have Hilbert manifold structures.

First we define the moduli spaces. There are two models, which we will refer to as the
border and the puncture model. These models are defined as follows:

Definition 4.25. Fix non-negative integers g and n, such that 2g − 2 + n > 0.

(1) The border model of the WP-class rigged moduli space is

MB
WP(g, n) = {(ΣB, ψ) : ΣB bordered of type (g, n), ψ ∈ RigWP(ΣB)}/ ∼

where (ΣB
1 , ψ) ∼ (ΣB

2 , φ) if and only if there is a biholomorphism σ : ΣB
1 → ΣB

2 such
that φ = σ ◦ ψ.

(2) The puncture model of the rigged moduli space is

MP
WP(g, n) = {(Σ, ψ) : Σ punctured of type (g, n), ψ ∈ Oqc

WP(Σ)}/ ∼
where (Σ1, ψ) ∼ (Σ1, φ) if and only if there is a biholomorphism σ : Σ1 → Σ2 such
that φ = σ ◦ ψ.

The puncture and border models (but with different classes of riggings) were used by [31]
and [27] respectively, in the study of conformal field theory. It was understood from their
inception that these rigged moduli spaces are in bijective correspondence, as can be seen
by cutting and sewing caps. However, one needs to be careful about the exact classes of
riggings used to make this statement precise. Replacing “bijection” with “biholomorphism”
in this statement of course requires the careful construction of a complex structure on at least
one of these spaces. It was shown in [21] that these two moduli spaces are quotient spaces
of T (ΣB) by a fixed-point-free properly discontinuous group, and thus inherit a complex
Banach manifold structure from T (ΣB). Similarly, we will demonstrate that the WP-class
rigged moduli spaces inherits a complex Hilbert manifold structure from TWP(ΣB). We first
need to show that the action of PModI(ΣB) defined by (4.1) is fixed point free and properly
discontinuous.

Theorem 4.26. The modular group PModI(ΣB) acts properly discontinuously and fixed-
point-freely on TWP(ΣB). The action of each element of PModI(ΣB) is a biholomorphism of
TWP(ΣB).

Proof. Recall that DB(ΣB) preserves TWP(ΣB) by Lemma 4.4. By [21, Lemma 5.2], DB(ΣB)
acts properly discontinuously and fixed-point freely on T (ΣB). Thus DB(ΣB) acts fixed-
point freely on TWP(ΣB). Now let x ∈ TWP(ΣB). There is a neighborhood U of x in T (ΣB)
such that [ρ]U ∩ U is empty for all [ρ] ∈ DB(ΣB). Clearly V = U ∩ TWP(ΣB) has the same
property, and is open in TWP(ΣB) by Theorem 4.24.

Each element [ρ] ∈ PModI(ΣB) is a biholomorphism of TWP(ΣB), by observing that ρ◦τ =
τ and applying Theorem 4.21. �

We now show that the rigged moduli spaces are Hilbert manifolds. Let ΣB be a fixed
bordered Riemann surface of type (g, n) and let τ ∈ Rig(ΣB) be a fixed rigging. Define the
mapping

P : T (ΣB) −→MB(g, n)

[ΣB, f,ΣB
1 ] 7−→ (ΣB

1 , f ◦ τ)
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where f ◦ τ = (f ◦ τ1, . . . , f ◦ τn). Note that this map depends on the choice of ΣB and τ . If
we choose τ ∈ RigWP(ΣB), we have the map

PWP = P |TWP(ΣB) .

It follows immediately from Proposition 4.8 that PWP maps into MB
WP(g, n).

Theorem 4.27. Given any p, q ∈ TWP(ΣB), PWP(p) = PWP(q) if and only if q = [ρ]p for
some [ρ] ∈ PModI(ΣB). Moreover, PWP is a surjection onto MB

WP(g, n).

Proof. All of these claims hold in the non-WP setting by [21, Theorem 5.2]. Thus the first
claim follows immediately. It was already observed that πWP maps into MB

WP(g, n). To
show that πWP is surjective, observe that by [21, Theorem 5.2], for any [ΣB

1 , ψ] ∈MB
WP(g, n)

there is a [ΣB, f1,Σ
B
∗ ] ∈ T (ΣB) such that [ΣB

∗ , f1 ◦ τ ] = [ΣB
1 , ψ]. By composing with a

biholomorphism we can assume that ΣB
∗ = ΣB

1 and f1◦τ = ψ. Thus f1 = ψ◦τ−1. Since for i =
1, . . . , n we have ψi◦τ−1

i ∈ QSWP(∂iΣ
B, ∂iΣ

B
1 ) by Proposition 2.17, f1 ∈ QC0(ΣB,ΣB

1 ). Thus
[ΣB, f1,Σ

B
1 ] ∈ TWP(ΣB) and PWP([ΣB, f1,Σ

B
1 ]) = [ΣB

1 , ψ], which completes the proof. �

This shows that TWP(ΣB)/PModI(ΣB) and MB
WP(g, n) are bijective. They are also bi-

holomorphic.

Corollary 4.28. The rigged moduli space MB(g, n) is a Hilbert manifold and the map PWP

is holomorphic and possesses local holomorphic inverses. The Hilbert manifold structure is
independent of the choice of base surface ΣB and rigging τ .

Proof. This follows immediately from Theorem 4.27, the fact that PModI(ΣB) acts fixed-
point freely and properly discontinuously by biholomorphisms (Theorem 4.26), and the fact
that the complex structure on TWP(ΣB) is independent of the choice of base rigging. �

It was shown in [21] that the border and puncture models of the rigged moduli space are
in one-to-one correspondence, and that the puncture model can be obtained as a natural

quotient of T̃WP(Σ). Those results pass immediately to the WP-class setting, with only very
minor changes to the proofs (much as above). We will simply summarize the results here.
Let Σ be a punctured Riemann surface of type (g, n). Denote by PModP(Σ) the modular
group of quasiconformal maps f : Σ → Σ modulo the quasiconformal maps homotopic to
the identity rel boundary. Elements [ρ] of PModP(Σ) act on T̃WP(Σ) via [ρ][Σ, f1,Σ1, ψ] =
[Σ, f1 ◦ ρ,Σ1, ψ]. Define the projection map

Q : T̃WP(Σ) → MP
WP(g, n)

[Σ, f,Σ1, ψ] 7→ [Σ1, ψ].

Finally, define the map

I :MP (g, n) → MB(g, n)

[Σ, φ] 7→ [Σ\φ1(D) ∪ · · · ∪ φn(D), φ|S1 ].

Theorem 4.29. The moduli spaces MP (g, n) and MB(g, n) are in one-to-one correspon-
dence under the bijection I. Thus MP (g, n) can be endowed with a unique Hilbert manifold
structure so that I is a biholomorphism. The map Q satisfies

(1) Q(p) = Q(q) if and only if there is a [ρ] ∈ PModP(Σ) such that [ρ]p = [q]
(2) Q is surjective,
(3) Q is holomorphic, and possesses a local holomorphic inverse in a neighborhood of

every point.
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