MATH 3322 Supplemental notes on Free Algebras ©January, 2019, T. Kucera January 18, 2019

Definition 0.1 Let \mathcal{L} be an algebraic language and \mathcal{K} a class of \mathcal{L} -algebras (closed under isomorphisms). [Later on, we will figure out the appropriate restrictions to put on \mathcal{K} .] Let X be a set, and $\varepsilon : X \to \mathcal{F}$ be an \mathcal{L} -algebra and a function mapping X into the underlying set F of \mathcal{F} .

We say that $(\varepsilon, \mathcal{F})$ is a free algebra on X in \mathcal{K} if for all algebras $\mathcal{B} \in \mathcal{K}$ and maps $b: X \to B$, there is a unique homomorphism $\beta: \mathcal{F} \to \mathcal{B}$ such that $\varepsilon \circ \beta = b$.

Theorem 0.2 The free algebra on X in \mathcal{K} , if it exists, is unique up to isomorphism.

Recall that the subalgebra \mathcal{B} of \mathcal{A} generated by $Y \subseteq A$ is the intersection of all subalgebras of \mathcal{A} which contain Y (**Note:** we need an exercise on the equivalence of this with the "other" definition, where the underlying set B is found by "closing down" under the operations of the language.)

Proposition 0.3 The free algebra $(\varepsilon, \mathcal{F})$ on X in \mathcal{K} , if it exists, is generated by $\varepsilon[X]$.

Proof: Let \mathcal{F}_0 be the subalgebra of \mathcal{F} generated by $\varepsilon[X]$. Then it is easy to see that $(\varepsilon, \mathcal{F}_0)$ is also free on X. So there is an isomorphism $\mathcal{F} \to \mathcal{F}_0$. But then the composition of this with the inclusion of \mathcal{F}_0 in \mathcal{F} gives an automorphism of \mathcal{F} which commutes with ε , which is therefore the identity. Therefore in fact the inclusion map is the identity

Remark: This seems like an excessively wordy proof. Can anyone do better?

We will show one construction that proves that if \mathcal{K} is closed under isomorphisms, products and subalgebras, then the free algebra in \mathcal{K} on any set X exists.

We will also at least outline a different proof that the free algebra in any variety exists; and work out the details to show that the free group on a set X in any variety of groups exists. In particular, there are free groups on any set X, and free abelian groups on any set X.

Theorem 0.4 Let \mathcal{K} be closed under isomorphisms, products, and subalgebras. Then for any set X, the free algebra on X in \mathcal{K} exists.

Proof: The full details (with some diagram chasing!) will be given in class, but most of the proof is given here.

An X-pair [in \mathcal{K}] is any (e, \mathcal{A}) , where $\mathcal{A} \in \mathcal{K}$, $e : X \to A$, and \mathcal{A} is generated by e[X]. Two X-pairs (e, \mathcal{A}) and (e', \mathcal{A}') are *isomorphic* if there is an isomorphism $\psi : \mathcal{A} \to \mathcal{A}'$ such that $\psi \circ e = e'$. We write $\psi : (e, \mathcal{A}) \cong (e', \mathcal{A}')$.

Elementary counting arguments in set theory show first that there is an upper bound on the size of the underlying set of an X-pair, determined by the cardinality of X and the size of the language (in fact, $|A| \leq (|X| + \aleph_0) |\mathcal{L}|$). And again, simple counting arguments in set theory show that there are no more than $2^{|A|}$ automorphisms of a structure \mathcal{A} , so altogether there is no more than a set of equivalence classes of X-pairs.

That is, we can find an index set J and X-pairs $((e_j, \mathcal{A}_j))_{j \in J}$ such that for any X-pair (e, \mathcal{A}) , there is $j \in J$ and an isomorphism $\varphi : \mathcal{A} \to \mathcal{A}_j$ such that $\varphi \circ e = e_j$.

Let $\mathcal{P} = \prod_{j \in J} \mathcal{A}_j$ and define $\varepsilon : X \to P$ by $\varepsilon x = \langle e_j(x) \rangle_{j \in J}$. Let \mathcal{F} be the subalgebra of \mathcal{P} generated by $\varepsilon[X]$.

If $f: X \to A$ for some $\mathcal{A} \in \mathcal{K}$, then f[X] generates a subalgebra $\mathcal{A}' \subseteq \mathcal{A}$, which is in \mathcal{K} by assumption. Note that f is still a map from X into A', the underlying set of \mathcal{A}' ! Then there is $j \in J$ and an isomorphism $\psi : (e_j, \mathcal{A}_j) \cong (f, \mathcal{A}')$. Define $\varphi : \mathcal{F} \to \mathcal{A}'$ by $\varphi = \psi \circ (\pi_j \upharpoonright \mathcal{F})$. Then φ is naturally a map to \mathcal{A} by the inclusion of \mathcal{A}' in \mathcal{A} , and it is now easy to see that $\varphi \circ \varepsilon = f$. Furthermore, using the universal property of the direct product, we can see that φ is the unique such map.

The term algebra

Treat X as a set of "letters"—new constant symbols—as an addition to the formal language \mathcal{L} . That is, the elements of X are distinct from all the symbols of \mathcal{L} , and are treated like constant symbols in forming terms. We denote the expanded language by $\mathcal{L}(X)$. A "closed term" is a term of $\mathcal{L}(X)$ that does not contain any variables. We denote the set of all closed terms by \mathbb{T}_X . [We really should include \mathcal{L} in the notation as well, but there's no room!]

We define an \mathcal{L} -algebra $\mathcal{T} = \mathcal{T}_X$ on \mathbb{T}_X by interpreting each constant symbol of \mathcal{L} by itself—after all, a constant symbol is a closed term!—and by interpreting each operation symbol of \mathcal{L} by the definition of compound terms: $\mathbf{f}^{\mathcal{T}}(\mathbf{t}_1, \ldots, \mathbf{t}_n) = \mathbf{f}(\mathbf{t}_1, \ldots, \mathbf{t}_n)$, for closed terms $\mathbf{t}_1, \ldots, \mathbf{t}_n$.

Theorem 0.5 Let \mathcal{K} be the class of all \mathcal{L} -algebras. Then \mathcal{T}_X is the free algebra on X in \mathcal{K} .

Proof: Exercise: This follows almost immediately by the definition of evaluation of terms in a structure.

Theorem 0.6 Let \mathcal{V} be a non-trivial variety. Let $\Theta_{\mathcal{V}}$ be the meet of all the congruences Θ on \mathcal{T}_X such that $\mathcal{F} = \mathcal{T}_X / \Theta \in \mathcal{V}$.

Then \mathcal{F} is the free algebra on X in \mathcal{V} .

Proof: To follow.