MATH 3322 Supplemental notes on Finitely Generated Free Abelian Groups
 © ${ }^{\text {January, 2019, T. Kucera }}$

A summary of the key formulas:

Theorem 0.1 A subgroup G of a free abelian group F of rank n is a free abelian group of rank $m \leq n$. There is a basis [free generating set] $\left\{u_{1}, \ldots, u_{n}\right\}$ of F and integers $t_{1}, \ldots, t_{m} \geq 1$ such that (1) $\left\{t_{1} u_{1}, \ldots, t_{m} u_{m}\right\}$ is a basis for G and (2) $t_{i} \mid t_{i+1}$ for each $i, 1 \leq i<m$.
(1) $v_{1}=t_{1} x_{1}+k_{2} x_{2}+\cdots+k_{n} x_{n}$ is chosen with $v_{1} \in G,\left\{x_{1}, \ldots, x_{n}\right\}$ a basis for F, and t_{1} minimal amongst all such possible combinations.

We are doing an induction on the rank n, and have noted that the result is immediate for $n=1$. So we assume in the following that the result holds for all free abelian groups of rank $<n$.
(1a) We showed that $t_{1} \mid k_{j}$ for each j, that is, $k_{j}=q_{j} t_{1}$ for each j. It follows that if we set $u_{1}=x_{1}+\sum_{j-2}^{n} q_{j} x_{j}$ then $\left\{u_{1}, x_{2}, \ldots, x_{n}\right\}$ is a basis for F, and $v_{1}=t_{1} u_{1}$.
(2) Again since $\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis for F, for any $y \in G$ we can find integers so that $y=h_{1} x_{1}+\cdots+h_{n} x_{n}$. We proved that $t_{1} \mid h_{1}$, that is, $h_{1}=q t_{1}$ for some q.
(3) Then from (1),

$$
y-q v_{1}=\left(h_{1}-q t_{1}\right) x_{1}+\left(h_{2}-q k_{2}\right) x_{2}+\cdots+\left(h_{n}-q k_{n}\right) x_{n} .
$$

But $h_{1}-q t_{1}=0$.
So by bringing $q v_{1}$ to the right hand side of the equation and renaming all the coefficients, we find that any $y \in G$ can be expressed in the form

$$
y=s_{1} v_{1}+s_{2} x_{2}+\cdots s_{n} x_{n}=s_{1}\left(t_{1} u_{1}\right)+s_{2} x_{2}+\cdots s_{n} x_{n} .
$$

(4) Observe that since $\left\{x_{1}, \ldots, x_{n}\right\}$ is a free basis for $F,\left\{x_{2}, \ldots, x_{n}\right\}$ is a basis for a free abelian group H of rank $n-1$.

