MATH 3322 Problem Set 6

March 19, 2019
Solutions

Question 1. By the primitive element theorem, Theorem 8, a primitive element for $K\left(\theta_{1}, \theta_{2}\right)$ can be found in the form $\theta_{1}+k \theta_{2}$ for some $k \in K$. For instance, it is easy to see that $\sqrt{2}+i$ is a primitive element for $\mathbb{Q}(\sqrt{2}, i)$. For $(\sqrt{2}+i)^{2}=1+2 i \sqrt{2}$, and so $\sqrt{2} i \in \mathbb{Q}(\sqrt{2}+i)$. But then $(\sqrt{2}+i)(\sqrt{2} i)=2 i-\sqrt{2} \in \mathbb{Q}(\sqrt{2}+i)$, from which it follows easily that both $i \in \mathbb{Q}(\sqrt{2}+i)$ and $\sqrt{2} \in \mathbb{Q}(\sqrt{2}+i)$.

Find a primitive element (with explanation) for each of (a) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$;

Solution: The example suggests a solution to this by taking $\theta=\sqrt{2}+\sqrt{3}$. For then $\theta^{2}=2+\sqrt{2} \sqrt{3}+3$, and so $\sqrt{2} \sqrt{3} \in \mathbb{Q}(\theta)$. But then $\theta \sqrt{2} \sqrt{3}=2 \sqrt{3}+3 \sqrt{2}$ and it follows easily that $\sqrt{2}, \sqrt{3} \in \mathbb{Q}(\theta)$.
Solution: \quad Notice that $(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})=1$, so $\sqrt{3}-\sqrt{2}=(\sqrt{2}+\sqrt{3})^{-1} \in$ $\mathbb{Q}(\sqrt{2}+\sqrt{3})$. So immediately, $\sqrt{2}, \sqrt{3} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$.
[4] (b) $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.
Solution: There is an easy solution here if the inspiration strikes you.
Clearly $\theta=\sqrt{2} / \sqrt[3]{2}=\sqrt[6]{2} \in \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.
But $\sqrt{2}=(\sqrt[6]{2})^{3}$ and $\sqrt[3]{2}=(\sqrt[6]{2})^{2}$, so $\mathbb{Q}(\sqrt[6]{2})=\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.
Solution: $\quad \theta=\sqrt{2}+\sqrt[3]{2}$ is also a primitive element.
How to prove it?
Thanks to W.Z. for the following elegant solution:
Notice that $(\theta-\sqrt{2})^{3}=2$, so $\theta^{3}-3 \theta^{2} \sqrt{2}+6 \theta-2 \sqrt{2}=2$.
Solving for $\sqrt{2}$ yields

$$
\sqrt{2}=\frac{\theta^{3}+6 \theta-2}{3 \theta^{2}+2}
$$

so $\sqrt{2} \in \mathbb{Q}(\theta)$, and so also $\sqrt[3]{2}=\theta-\sqrt{2} \in \mathbb{Q}(\theta)$.

Question 2. Let K / F be a field extension, R a ring, and $F \leq R \leq K$.
(a) Suppose that K / F is algebraic.

Prove that R is a field.
Proof: Let $\alpha \in R$. But α is the root of some polynomial over F, say of degree $n \geq 1$, and we have seen that the elements of the field $F(\alpha)$ all can be written as polynomials in α of degree $<n$. Therefore $F(\alpha) \subseteq R$, in particular, $\alpha^{-1} \in R$. So R is a field
[2] (b) Give an example to show that the result fails when K / F is not algebraic.
Solution: I think every example works. For instance $F \subseteq F[x] \subseteq F(x)$ is typical.
Yes! Suppose that for every intermediate ring $F \leq R \leq K, R$ is a field. Then in particular, for every $\alpha \in K, F[\alpha]$ is a field, so $\alpha^{-1}=q(\alpha)$ for some $q \in F[x]$. Then $\alpha q(\alpha)=1$, so α is a root of the polynomial $x q(x)-1$.

Question 3. Let $[K: F]=n$. Prove the following:
(a) For all $\alpha \in K, \phi_{\alpha}: K \rightarrow K: k \mapsto \alpha k$ is a linear transformation of the vector space ${ }_{F} K$.

Proof: This is nothing more than saying that field multiplication is commutative, and distributive over addition.

Let k_{1}, k_{2} be elements of K and $a \in F$.
Then $\phi_{\alpha}\left(a k_{1}+k_{2}\right)=\alpha\left(k_{1}+k_{2}\right)=\alpha a k_{1}+\alpha k_{2}=a \alpha k_{1}+\alpha k_{2}=a \phi_{\alpha}\left(k_{1}\right)+\phi_{\alpha}\left(k_{2}\right)$, so ϕ_{a} is linear.
(b) The map defined by sending each $\alpha \in K$ to the matrix of the linear transformation ϕ_{α} is an embedding of K as a subfield of the ring $\mathrm{M}_{n}(F)$ of $n \times n$ matrices over F.
Proof: We know that the ring of linear transformations of a finite dimensional vector space to itself can be represented as $\mathrm{M}_{n}(F)$; so all that we need to observe is that $\phi_{\alpha} \circ \phi_{\beta}=\phi_{\alpha \beta}$ and $\phi_{\alpha}+\phi_{\beta}=\phi_{\alpha}+\phi_{\beta}$. Clearly if $\alpha \neq \beta$ then $\phi_{\alpha} \neq \phi_{\beta}$, so we have an embedding.
(Hence every extension of F of degree n embeds as a subfield of $\mathrm{M}_{n}(F)$.

Question 4. Each of $p_{2}=x^{2}+x+1, p_{3}=x^{3}+x+1$, and $p_{4}=x^{4}+x+1$ is irreducible over \mathbb{F}_{2}, the field with two elements. Let α be a root of p_{2}, let β be a root of p_{3}, and let γ be a root of p_{4}.
(a) Find all the roots of p_{2} in $E_{2}=\mathbb{F}_{2}(\alpha)$, all the roots of p_{3} in $E_{3}=\mathbb{F}_{2}(\beta)$, and all the roots of p_{4} in $E_{4}=\mathbb{F}_{2}(\gamma)$.
Solution: Trial and error is completely acceptable, but here is a detailed analysis:
All coefficients a in the following are in \mathbb{Z}_{2}, that is, are either 0 or 1 , and so $a^{2}=a$. Recall that $(x+y)^{2}=x^{2}+y^{2}$ in a field of characteristic 2 .
Remember also that in E_{2}, every element will be a linear polynomial in α, in E_{3} every element will be a quadratic polynomial in β, and in E_{4}, every element will be a third degree polynomial in γ, and we have the identities $\alpha^{2}=\alpha+1, \beta^{3}=\beta+1$, and $\gamma^{4}=\gamma+1$.
Furthermore, p_{2} can have no more than 2 roots, p_{3} can have no more than 3 roots, and p_{4} can have no more than 4 roots.

And finally we take advantage of the squaring relationship mentioned at the beginning. Consider a root δ of a polynomial of the form $x^{n}+x+1$ over \mathbb{F}_{2}. So in some extension field $E_{n}, 0=\delta^{n}+\delta+1$. Therefore

$$
0=0^{2}=\left(\delta^{n}+\delta+1\right)^{2}=\delta^{2 n}+\delta^{2}+1
$$

so δ^{2} is also a root. (!)
Therefore the roots are $\delta, \delta^{2}, \delta^{4}, \ldots \delta^{2^{n-1}}$.
The roots of p_{2} are α and $\alpha^{2}=\alpha+1$; the roots of p_{3} are β, β^{2}, and $\beta^{4}=\beta^{2}+\beta$; and the roots of p_{4} are $\gamma, \gamma^{2}, \gamma^{4}=\gamma+1$, and $\gamma^{8}=\gamma^{2}+1$.
Solution: Trial-and-error is not too bad for p_{3}, but is awkward already for p_{4}. But we can do a systematic search even without the insight used in the previous solution. Take a typical element of E_{4}, say $\delta=a_{3} \gamma^{3}+a_{2} \gamma^{2}+a_{1} \gamma+a_{0}$. Then $\delta^{4}=a_{3} \gamma^{12}+a_{2} \gamma^{8}+a_{1} \gamma^{4}+a_{0}=$ $a_{3}\left(\gamma^{3}+\gamma^{2}+\gamma+1\right)+a_{2}\left(\gamma^{2}+1\right)+a_{1}(\gamma+1)+a_{0}$ and so $p_{3}(\delta)=a_{3}\left(\gamma^{3}+\gamma^{2}+\gamma+1+\gamma^{3}\right)+$ $a_{2}\left(\gamma^{2}+1+\gamma^{2}\right)+a_{1}(\gamma+1+\gamma)+a_{0}+a_{0}+1=a_{3}\left(\gamma^{2}+\gamma\right)+a_{3}+a_{2}+a_{1}+1$.
So $p_{3}(\delta)=0$ iff $a_{3}=0$ and $a_{3}+a_{2}+a_{1}+1=0$, that is $a_{3}=0$ and $a_{2}+a_{1}+1=0$; giving the four solutions $\gamma, \gamma^{2}, \gamma+1$, and $\gamma^{2}+1$.
[1] (b) Give a brief explanation of why E_{2} does not embed in E_{3} and of why E_{3} does not embed in E_{4}.
Solution: The cardinalities of the group of units of each of these three fields are 3, 7, 15 respectively, and 3 does not divide 7 and 7 does not divide 15 .
Alternatively, $\left[E_{4}: \mathbb{F}_{2}\right]=4,\left[E_{3}: \mathbb{F}_{2}\right]=3$, and $\left[E_{2}: \mathbb{F}_{2}\right]=2$, and $2 \times 3,3 \times 4$.
[2] (c) Show that the map determined by $\alpha \mapsto \gamma^{2}+\gamma+1$ defines an embedding of $E_{2} \hookrightarrow E_{4}$.
Proof: $\quad p_{2}$ is an irreducible polynomial and α is a root. Observe that $p_{2}\left(\gamma^{2}+\gamma+1\right)=$ $\left(\gamma^{2}+\gamma+1\right)^{2}+\left(\gamma^{2}+\gamma+1\right)+1=\left(\gamma^{4}+\gamma^{2}+1\right)+\left(\gamma^{2}+\gamma+1\right)+1=0$. Therefore $E_{2}=\mathbb{F}_{2}(\alpha) \cong \mathbb{F}_{2}\left(\gamma^{2}+\gamma+1\right) \subseteq \mathbb{F}_{2}(\gamma)=E_{4}$.

