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Solutions

Question 1. By the primitive element theorem, Theorem 8, a primitive element for K(θ1, θ2)
can be found in the form θ1 + kθ2 for some k ∈ K . For instance, it is easy to see that

√
2 + i

is a primitive element for Q(
√

2, i) . For (
√

2 + i)2 = 1 + 2i
√

2 , and so
√

2i ∈ Q(
√

2 + i) . But
then (

√
2+ i)(

√
2i) = 2i−

√
2 ∈ Q(

√
2+ i) , from which it follows easily that both i ∈ Q(

√
2+ i)

and
√

2 ∈ Q(
√

2 + i) .
Find a primitive element (with explanation) for each of

(a) Q(
√

2,
√

3) ;[2]

Solution: The example suggests a solution to this by taking θ =
√

2 +
√

3 . For then
θ2 = 2 +

√
2
√

3 + 3 , and so
√

2
√

3 ∈ Q(θ) . But then θ
√

2
√

3 = 2
√

3 + 3
√

2 and it follows
easily that

√
2,
√

3 ∈ Q(θ) .

Solution: Notice that (
√

2 +
√

3)(
√

3 −
√

2) = 1 , so
√

3 −
√

2 = (
√

2 +
√

3)−1 ∈
Q(
√

2 +
√

3) . So immediately,
√

2,
√

3 ∈ Q(
√

2 +
√

3) .

(b) Q(
√

2, 3
√

2) .[4]

Solution: There is an easy solution here if the inspiration strikes you.

Clearly θ =
√

2/ 3
√

2 = 6
√

2 ∈ Q(
√

2, 3
√

2) .

But
√

2 =
(

6
√

2
)3

and 3
√

2 =
(

6
√

2
)2

, so Q( 6
√

2) = Q(
√

2, 3
√

2) .

Solution: θ =
√

2 + 3
√

2 is also a primitive element.

How to prove it?

Thanks to W.Z. for the following elegant solution:

Notice that (θ −
√

2)3 = 2 , so θ3 − 3θ2
√

2 + 6θ − 2
√

2 = 2 .

Solving for
√

2 yields
√

2 =
θ3 + 6θ − 2

3θ2 + 2
,

so
√

2 ∈ Q(θ) , and so also 3
√

2 = θ −
√

2 ∈ Q(θ) .
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Question 2. Let K/F be a field extension , R a ring, and F ≤ R ≤ K .
(a) Suppose that K/F is algebraic.[2]

Prove that R is a field.

Proof: Let α ∈ R . But α is the root of some polynomial over F , say of degree n ≥ 1 ,
and we have seen that the elements of the field F (α) all can be written as polynomials in α
of degree < n . Therefore F (α) ⊆ R , in particular, α−1 ∈ R . So R is a field

(b) Give an example to show that the result fails when K/F is not algebraic.[2]

Solution: I think every example works. For instance F ⊆ F [x] ⊆ F (x) is typical.

Yes! Suppose that for every intermediate ring F ≤ R ≤ K , R is a field. Then in particular,
for every α ∈ K , F [α] is a field, so α−1 = q(α) for some q ∈ F [x] . Then αq(α) = 1 , so α is
a root of the polynomial xq(x)− 1 .

Question 3. Let [K : F ] = n . Prove the following:

(a) For all α ∈ K , φα : K → K : k 7→ αk is a linear transformation of the vector space FK .[2]

Proof: This is nothing more than saying that field multiplication is commutative, and
distributive over addition.

Let k1 , k2 be elements of K and a ∈ F .

Then φα(ak1 + k2) = α(k1 + k2) = αak1 + αk2 = aαk1 + αk2 = aφα(k1) + φα(k2) , so φa is
linear.

(b) The map defined by sending each α ∈ K to the matrix of the linear transformation φα is[2]

an embedding of K as a subfield of the ring Mn(F ) of n× n matrices over F .

Proof: We know that the ring of linear transformations of a finite dimensional vector space
to itself can be represented as Mn(F ) ; so all that we need to observe is that φα ◦ φβ = φαβ
and φα + φβ = φα + φβ . Clearly if α 6= β then φα 6= φβ , so we have an embedding.

(Hence every extension of F of degree n embeds as a subfield of Mn(F ) .
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Question 4. Each of p2 = x2 + x + 1 , p3 = x3 + x + 1 , and p4 = x4 + x + 1 is irreducible
over F2 , the field with two elements. Let α be a root of p2 , let β be a root of p3 , and let γ be
a root of p4 .

(a) Find all the roots of p2 in E2 = F2(α) , all the roots of p3 in E3 = F2(β) , and all the roots[3]

of p4 in E4 = F2(γ) .

Solution: Trial and error is completely acceptable, but here is a detailed analysis:

All coefficients a in the following are in Z2 , that is, are either 0 or 1 , and so a2 = a . Recall
that (x+ y)2 = x2 + y2 in a field of characteristic 2.

Remember also that in E2 , every element will be a linear polynomial in α , in E3 every
element will be a quadratic polynomial in β , and in E4 , every element will be a third degree
polynomial in γ , and we have the identities α2 = α+ 1 , β3 = β + 1 , and γ4 = γ + 1 .

Furthermore, p2 can have no more than 2 roots, p3 can have no more than 3 roots, and p4
can have no more than 4 roots.

And finally we take advantage of the squaring relationship mentioned at the beginning.
Consider a root δ of a polynomial of the form xn +x+ 1 over F2,. So in some extension field
En , 0 = δn + δ + 1 . Therefore

0 = 02 = (δn + δ + 1)2 = δ2n + δ2 + 1 ,

so δ2 is also a root. (!)

Therefore the roots are δ, δ2, δ4, . . . δ2
n−1

.

The roots of p2 are α and α2 = α + 1 ; the roots of p3 are β , β2 , and β4 = β2 + β ; and
the roots of p4 are γ , γ2 , γ4 = γ + 1 , and γ8 = γ2 + 1 .

Solution: Trial-and-error is not too bad for p3 , but is awkward already for p4 . But we
can do a systematic search even without the insight used in the previous solution. Take a
typical element of E4 , say δ = a3γ

3 +a2γ
2 +a1γ+a0 . Then δ4 = a3γ

12 +a2γ
8 +a1γ

4 +a0 =
a3(γ

3 + γ2 + γ + 1) + a2(γ
2 + 1) + a1(γ + 1) + a0 and so p3(δ) = a3(γ

3 + γ2 + γ + 1 + γ3) +
a2(γ

2 + 1 + γ2) + a1(γ + 1 + γ) + a0 + a0 + 1 = a3(γ
2 + γ) + a3 + a2 + a1 + 1 .

So p3(δ) = 0 iff a3 = 0 and a3 + a2 + a1 + 1 = 0 , that is a3 = 0 and a2 + a1 + 1 = 0 ; giving
the four solutions γ , γ2 , γ + 1 , and γ2 + 1 .

(b) Give a brief explanation of why E2 does not embed in E3 and of why E3 does not embed[1]

in E4 .

Solution: The cardinalities of the group of units of each of these three fields are 3, 7, 15
respectively, and 3 does not divide 7 and 7 does not divide 15 .

Alternatively, [E4 : F2] = 4 , [E3 : F2] = 3 , and [E2 : F2] = 2 , and 2 6 | 3 , 3 6 | 4 .

(c) Show that the map determined by α 7→ γ2 + γ + 1 defines an embedding of E2 ↪→ E4 .[2]

Proof: p2 is an irreducible polynomial and α is a root. Observe that p2(γ
2 + γ + 1) =

(γ2 + γ + 1)2 + (γ2 + γ + 1) + 1 = (γ4 + γ2 + 1) + (γ2 + γ + 1) + 1 = 0 . Therefore
E2 = F2(α) ∼= F2(γ

2 + γ + 1) ⊆ F2(γ) = E4 .
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