## MATH 3322 Problem Set 5 March 8, 2019 Solutions

[3] **Question 1.** Prove that if H is normal in G and both H and G/H are solvable, then so is G.

**Proof:** Let

$$\{1\} = H_0 \le H_1 \le \dots \le H_m = H$$

and

$$\{1\} = G_0/H \le G_1/H \le \dots \le G_N/H = G/H$$

be subnormal series with abelian factors. Recall that every subgroup of G/H has the form G'/H for some G',  $H \leq G' \leq G$ , and that  $G'/H \leq G/H$  iff  $G' \leq G$ . So

$$\{1\} = H_0 \le H_1 \le \dots \le H_m = G_0 \le G_1 \le \dots \le G_n = G$$

is a subnormal series in G, and furthermore since  $(G_{i+1}/H)/(G_i/H) \cong G_{i+1}/G_i$  and the former is abelian, this series has abelian factors. Hence G is solvable.

- [2] Question 2. Prove that if H is normal in G and  $H \leq K \leq G$ , then  $K/H \subseteq Z(G/H)$  iff  $[K, G] \subseteq H$ . Proof: For  $k \in G$ ,  $k/H \in Z(G/H)$  iff for all  $g \in G$ ,  $(k^{-1}/H)(g^{-1}/H)(k/H)(g/H) = H$ iff for all  $g \in G$ ,  $k^{-1}g^{-1}kg = [k,g] \in H$ . Therefore for  $H \leq K \leq G$ ,  $K/H \subseteq Z(G/H)$  iff  $[K, G] \subseteq H$ . Remark: For the original version of the question, note that if  $H \leq K_1 < K \leq G$  and  $[K, G] \subseteq H$ , it is still true that  $[K_1, G] \subseteq H$ , but clearly  $K_1/H \subset K/H$ .
- [2] **Question 3.** Prove that if A is a free abelian group on S and B is a free abelian group on T and  $S \cap T = \emptyset$ , then  $A \oplus B$  is a free abelian group on  $S \cup T$ . **Proof:** Suppose that H is an abelian group and  $h : S \cup T \to H$ . Since  $S \cap T = \emptyset$ ,  $h = (h \upharpoonright S) \cup (h \upharpoonright T$ . Then there are unique homomorphisms  $h_A : A \to H$  and  $h_B : B \to H$ such that  $h_A \upharpoonright S = h \upharpoonright S$  and  $h_B \upharpoonright T = h \upharpoonright T$  by the universal property of abelian groups. Then by the universal property of the direct sum, it follows that  $h_A \oplus h_B : A \oplus B \to H$  defined by  $(h_A \oplus h_B)(\langle a, b \rangle) = h_A(a) + h_B(b)$  is the unique homomorphism  $A \oplus B \to H$  extending h.

Remark: There is a nice diagram at the end. Question 4 follows after Question 5

... and one of you found the "sneaky" proof: **Proof:** 

 $A \cong \mathbb{Z}^{(S)}, B \cong \mathbb{Z}^{(T)}$ , and since  $S \cap T = \emptyset, A \oplus B \cong \mathbb{Z}^{(S \cup T)}$ , the free group on  $S \cup T$ .

If I use this question again in the future, I will have to say "prove from the definitions..."

**Question 5.** An abelian group A is called *divisible* if for every  $a \in A$  and every  $0 \neq n \in \mathbb{Z}$ , there is  $b \in A$  such that nb = a.

Clearly  $\langle \mathbb{Q}; +, -, 0 \rangle$  is divisible.

[2]

(a) Prove that a finite abelian group is not divisible.

Hint: Consider an element of prime power order.

**Remark:** A group G is of bounded exponent if for some  $n, g^n = 1$  for all  $n \in G$ . Your proof will (likely) show in fact that an abelian group of bounded exponent is not divisible.

**Further Remark**: As several of you have pointed out, the Remark is a better hint than the Hint.

**Proof:** Suppose G is a finite abelian group, |G| = n. Then for every  $b \in G$ , nb = 0. So if  $0 \neq a \in G$ , a is not divisible by n.

In fact, if G is an abelian group of exponent n, then every  $b \in G$ , nb = 0, so the same proof applies.

[3] (b) Prove that an (arbitrary) direct sum of abelian groups is divisible iff each of the summands is divisible.

**Proof:** Let  $A = \bigoplus_{I} A_i$  be a direct sum of abelian groups.

Really the proof boils down to nothing more than noting that for  $\overline{b} = \langle b_i \rangle_{i \in I} \in A$ ,  $n\overline{b} = \langle nb_i \rangle_{i \in I}$ .

If A is divisible,  $c \in A_i$ , and  $0 \neq n \in \mathbb{Z}$ , let  $\overline{a} \in A$  be any tuple with  $a_i = c$ , find  $\overline{b} \in A$  such that  $n\overline{b} = \overline{a}$ . Then  $nb_i = c$ .

On the other hand, if each  $A_i$  is divisible, and  $\overline{a} \in A$ , for each  $i \in I$  such that  $a_i \neq 0$ , find  $b_i \in A_i$  such that  $nb_i = a_i$  and otherwise set  $b_i = 0$ . Then  $n\overline{b} = \overline{a}$ .

[2] (c) Prove that a homomorphic image of a divisible abelian group is divisible.

**Proof:** Suppose  $\psi : A \to C$  is a surjective homomorphism of abelian groups. Let  $c \in C$  and  $0 \neq n \in \mathbb{Z}$ . Then there is  $a \in A$  such that  $\psi(a) = c$  and  $b \in A$  such that nb = a. Then  $n\psi(b) = \psi(a) = c$ .

(d) Prove that Q/Z is a divisible group in which every element is of finite order, and in which there are elements of any finite order.

**Proof:**  $\mathbb{Q}$  is a divisible abelian group so  $\mathbb{Q}/\mathbb{Z}$  is divisible by part (c). If  $a/b \in \mathbb{Q}$  is a fraction in lowest form with b > 1, (so  $(a/b) + \mathbb{Z} \neq 0$ ) then  $b(a/b) \in \mathbb{Z}$  but  $c(a/b) \notin \mathbb{Z}$  for any  $c, 1 \leq c < a$ ), and so the order of  $a/b + \mathbb{Z}$  in  $\mathbb{Q}/\mathbb{Z}$  is b.

[3] **Question 4.** Prove (from the definition) that a homomorphic image of a nilpotent group is nilpotent.

**Proof:** Let  $0 = Z_0 < Z_1 < \cdots < Z_n = G$  be the ascending central series of the group G,  $\psi : G \twoheadrightarrow H$  an epimorphism, and  $0 = Z'_0 < Z'_1 < \cdots < Z'_m \leq H$  the ascending central series in H. So in particular for i < n (or for i < m, as the case may be),  $Z_{i+1}[Z'_{i+1}]$  is the full inverse image in G [in H] of  $Z(G/Z_i)$  [of  $Z(H/Z'_i)$ .

I claim that for  $i \leq n$ ,  $\psi[Z_i] \subseteq Z'_i$ , and so in particular  $Z'_i = H$  for some  $i \leq n$ .

I proceed by induction on  $i \leq n$ . Clearly if  $h \in Z_1 = Z(G)$  then  $\psi(h)$  commutes with every element of H. If we have shown that  $\psi[Z_i] \subseteq Z'_i$  and  $h \in G$  is such that  $hZ_i$  commutes with every element of  $G/Z_i$ , then for all  $g \in G$ ,  $g^{-1}h^{-1}gh \in Z_i$ , so  $\psi(g^{-1}h^{-1}gh) \in \psi[Z_i] \subseteq Z'_i$ . But  $\psi$  is a surjection, so  $\psi(h)$  is such that  $\psi(h)Z'_i$  commutes with every element of  $H/Z'_I$ , that is,  $\psi(h) \in Z'_{i+1}$ .

## Question 3.



 $\langle S, \epsilon_S, A \rangle$  and  $\langle S, \epsilon_S, A \rangle$  are free abelian group diagrams.  $\langle A, \varepsilon_A, B, \varepsilon_B, A \oplus B \rangle$  is a direct sum diagram.

We define  $\epsilon : S \cup T \to A \oplus B$  by  $\epsilon = \varepsilon_A \circ \epsilon_S \cup \varepsilon_B \circ \epsilon_T$ .  $\epsilon$  is well-defined since  $S \cap T = \emptyset$ .  $f : S \cup T \to H$  is a test group for the definition of " $\langle S \cup T, \epsilon, A \oplus B \rangle$  is a free abelian group". The maps  $f_S$  and  $f_T$  are defined by restriction.

 $\varphi_A$  and  $\varphi_B$  exist and are unique making the upper left quadrant and the upper right quadrant commutative, respectively, since A and B are free.

 $\varphi$  exists and is unique by the universal property of the direct sum.

Then by the definitions, and for  $s \in S$ ,  $\varphi \epsilon(s) = \varphi \varepsilon_A \epsilon_S(s) = \varphi_A \epsilon_S(s) = f_S(s)$ , and similarly for  $t \in T$ . And so (again since S and T are disjoint),  $\varphi \epsilon = f$ .