
MATH 3322 Problem Set 4
February 25, 2019

Solutions

Notation: Let Dn be the dihedral group of symmetries of the regular n-gon, generated by two
elements r and s such that rn = 1, s2 = 1, rs = sr−1 .

Note that many authors call this D2n , to reflect the order of the group. Ames (our text) or
Beachy and Blair use the name Dn as we have defined it; Dummit and Foote, another important
reference, uses D2n .

Question 1. Let p ∈ Z be prime.[3]

Prove that Z/pnZ has a unique composition series.
Proof: [The key point lies in recognizing that the subgroup lattice of Z/pnZ is a chain: and
this is what proves uniqueness.

Every subgroup and every image of a cyclic group is cyclic, and the sugroups of Zn are
precisely dZn

∼= Z(n/d) where d|n ; and so every subgroup and every image of a p-group is a
p-group. Therefore in particular the subgroup lattice of Z/pnZ is determined by the chain of
divisors of pn : it is a chain with subgroups (isomorphic to)

0 ⊂ Z/pZ ↪→ Z/p2Z ↪→ · · · ↪→ Z/pn−1Z ↪→ Z/pnZ ,

and each factor of this subnormal series is Z/pZ , which is simple. Any shorter chain of sub-
groups must have a factor Z/pkZ , k > 1 .

Question 2. The sublattice diagrams for the quaternion group Q8 and the dihedral group[4]

D4 are attached.
Using only these diagrams and the fact that both groups have 8 elements, explain why Q8

has exactly 3 distinct composition series and D8 has exactly 7 distinct composition series.
Solution: Since each group has 8 elements, subgroups can only have cardinality 1, 2, 4, or
8, and in these two cases, the cardinality of a subgroup can be identified by its height in the
subgroup lattice. From the lengths of the chains, there are subgroups of every possible size.
The only possible composition factor is Z/2Z . From the diagrams, we see in fact that any
“covering pair” of subgroups has Z/2Z as its quotient (and any subgroup of index 2 is normal).
Therefore the paths through the subgroup lattice are, in each case, composition series. But Q8

has 3 paths and D8 has 7 paths.
Remark: The insightful way to solve this problem is to prove that in any group of order 2n , a
chain of subgroups of length n + 1 is necessarily a composition series (the orders of the groups
in such a chain are necessarily 1, 2, 4, . . . , 2n) and so since each has index 2 in the following
one, each subgroup is normal in its successor and the factor groups are all Z2 , which is simple.

In fact, if you read the text section on nilpotent groups, you will find a proof of the the fact
that every finite p-group is nilpotent, for roughly the same reasons as given here.
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Question 3. Prove that if G has a composition series and 1 6= H EG , then G has a compo-[3]

sition series containing H .
Proof: WLOG H 6= G as well. By the Schreier Refinement Theorem the subnormal series
1 C H C G and any composition series for G have a equivalent refinements, one of which
necessarily contains H . After deleting duplications, since it is equivalent to a composition
series, all its factors are simple, that is, it is itself a composition series.

Question 4. Prove that D2n is solvable for each n .[4]

Hint: Of course you only need to be able to find one subnormal series with abelian factors; the
work you did on the previous question and the diagram for D4 should give you a hint towards
a fairly easy answer.
Proof: We saw in the previous solution that we get a sequence of groups each of index 2 in
the next.

Consider D2n+1 =
〈〈

r, s : r2
n+1

= 1, s2 = 1, rs = sr−1
〉〉

. Let t = r2 . Then t2
n

=(
r2
)2n

= r2·2
n

= 1 and ts = r2s = rsr−1 = sr−2 = st1 , so the subgroup generated by t
and s is isomorphic to D2n . Therefore we get the descending chain of subgroups

D2n+1 > D2n > · · · > D2 > 1 ,

each of index 2 in the one above, and hence normal with simple abelian factor Z/2Z .
Proof: And several of you came up with a much shorter proof. It is not actually necessary
to find a composition series, as above.

Consider D2n , a group of order 2n+1 . Note that 〈〈r〉〉 ∼= Z/2n/ZZ , an abelian group of
order 2n , hence of index 2 in D2n . Therefore D2n/ 〈〈r〉〉 ∼= Z/2Z and so the subnormal series
D2n D 〈〈r〉〉D 1 shows that D2n is solvable.

Note that this same argument applies to
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Question 5. Prove that:
(a) Every subgroup of a solvable group is solvable.[3]

(b) Every homomorphic image of a solvable group is solvable.[3]

Proof: Suppose
G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gn = 1

with Gi/Gi+1 abelian.

(a) Let H be a subgroup of G . Then H ∩ Gi+1 is normal in H ∩ Gi since Gi+1 is normal in
Gi . Furthermore (H ∩ Gi)/(H ∩ Gi+1) ∼= Gi+1(H ∩ Gi)/Gi+1 by the Second Isomorphism
Theorem, but the latter is a subgroup of the abelian group Gi/Gi+1 . Therefore

H = H ∩G0 ≥ H ∩G1 ≥ H ∩G2 ≥ · · · ≥ H ∩Gn = 1

shows that H is solvable.

(b) Let H E G . Then (HGi+1)/H E (HGi)/H) for each i , and (HGi)/H E (HGi+1)/H) ∼=
HGi/HGi+1 by the First Isomorphism Theorem. But the map Gi/Gi+1 → HGi/HGi+1

defined by gi/Gi+1 7→ gi/HGi+1 is a well-defined homomorphism since Gi+1 ⊆ HGi+1 and
is a surjection since H ⊆ HGi+1 . Therefore HGi/HGi+1 is the image of an abelian group
and is therefore also abelian. Therefore

G/H = HG0/H ≥ HG1/H ≥ HG2/H ≥ · · · ≥ HGn/H = 1

shows that G/H is solvable.

You can work exactly the same proof by considering an epimorphism ϕ : G � K and
setting Ki = ϕ[Gi] . (For if you set H = ker(ϕ) , then Ki

∼= HGi+1)/H .)
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Supplementary notes on the dihedral group D2n .

Proposition DN is solvable for all N .
DN is nilpotent iff N = 2n for some n . D2n is nilpotent of class n .

Proof: Clearly 〈〈r〉〉 ∼= Z/NZ , an abelian subgroup of order N , and hence of index 2 in DN .
Therefore it is normal, and the quotient is Z/2Z , so the subnormal series DN D 〈〈r〉〉D 1 shows
that DN is solvable.

For the second assertion, first we show that for any m > 2 , the centre of Dm is non-trivial
iff m = 2k , in which case the centre is isomorphic to

〈〈
rk
〉〉 ∼= Z2 . (Note that D2 is abelian

and so is its own centre.)
Fix m . When can rk be in the centre (k < m)? Certainly it must commute with s , so we

have srk = rks = sr−k , and so rk = r−k or r2k = 1 . Since m is the least positive value for
which rm = 1 , 2k = m , that is, m is even. Since rk trvially commutes with r , certainly in
this case rk is in the centre of D2k . What about an element of the form rts for some t ? If
it is in the centre, it must commute with r , and so r(rts) = (rts)r = rtr−1s , and therefore
rt+1 = rt−1 , and so r2 = 1 . But we assume that m > 2 , so this is impossible. So for m > 2 ,
Dm has a centre iff m = 2k for some k , in which case rk generates the centre.
Remark: So we have immediately Dm is not nilpotent if m is odd, but is solvable whenever m
is even. It follows from the rest of the argument that e.g., D6 is an example of a solvable group
which is not nilpotent.

Now we show that for k > 1 , G = D2k/
〈〈
rk
〉〉 ∼= Dk . But this is easy: G is generated by

the cosets r̄ and s̄ of r and of s respectively, and only r is collapsed: s̄2 = 1 , r̄s̄ = s̄r̄−1 , and
r̄k = 1 , exactly the presentation of Dk .

In general, any natural number N ≥ 2 can be written uniquely in the form N = 2n(2k + 1)
with n, k ≥ 0 . We claim that the upper central series of DN has the form

{ 1 } = Z0 C Z1 C · · · C Zn EDN ,

with equality at the last step if k = 0 (i.e. N is a power of 2) and DN/Zn being centreless
otherwise. If n = 0 and k > 0 , we have seen that DN is centreless. For n = m + 1 , the centre
Z1 has two elements and D2m+1(2k+1)/Z1

∼= D2m(2k+1) . So if the claim holds for N = 2m(2k+1) ,
we have by inductive hypothesis an upper central series

{ 1 } = Z1/Z1 C Z2/Z1 C · · · C Zm+1/Z1 ED2m+1(2k+1)/Z1
∼= D2m(2k+1) ,

with equality if k = 0 and (D2m+1(2k+1)/Z1)/(Zm+1/Z1) being centreless otherwise. That is,
for each i , 1 ≤ i < m + 1 , Zi+1/Z1 is chosen so that (Zi+1/Z1)/(Zi/Z1) is the centre of
(D2m+1(2k+1)/Z1)/(Zi/Z1) . Now just apply the second isomorphism theorem to simplify these
terms: Zi+1 is chosen so that Zi+1/Zi is the centre of D2m+1(2k+1)/Zi , that is,

{ 1 } = Z0 C Z1 C · · · C Zm+1 ED2m+1(2k+1)

is the upper central series of D2m+1(2k+1) , with equality if k = 0 and D2m+1(2k+1)/Zm+1 being
centreless otherwise.

So we have the claim, and therefore if N = 2n then DN is nilpotent of class n , and if
N = 2n(2k + 1) with k > 0 then DN is not nilpotent.

As a final point, it follows from the construction that Zk is generated by r2
n−k

and so is
isomorphic to the cyclic group of order 2k .
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