MATH 3322 Problem Set 4

February 25, 2019

Solutions

Notation: Let D_{n} be the dihedral group of symmetries of the regular n-gon, generated by two elements r and s such that $r^{n}=1, s^{2}=1, r s=s r^{-1}$.

Note that many authors call this $D_{2 n}$, to reflect the order of the group. Ames (our text) or Beachy and Blair use the name D_{n} as we have defined it; Dummit and Foote, another important reference, uses $D_{2 n}$.
[3] Question 1. Let $p \in \mathbb{Z}$ be prime.
Prove that $\mathbb{Z} / p^{n} \mathbb{Z}$ has a unique composition series.
Proof: [The key point lies in recognizing that the subgroup lattice of $\mathbb{Z} / p^{n} \mathbb{Z}$ is a chain: and this is what proves uniqueness.

Every subgroup and every image of a cyclic group is cyclic, and the sugroups of \mathbb{Z}_{n} are precisely $d \mathbb{Z}_{n} \cong \mathbb{Z}_{(n / d)}$ where $d \mid n$; and so every subgroup and every image of a p-group is a p-group. Therefore in particular the subgroup lattice of $\mathbb{Z} / p^{n} \mathbb{Z}$ is determined by the chain of divisors of p^{n} : it is a chain with subgroups (isomorphic to)

$$
0 \subset \mathbb{Z} / p \mathbb{Z} \hookrightarrow \mathbb{Z} / p^{2} \mathbb{Z} \hookrightarrow \cdots \hookrightarrow \mathbb{Z} / p^{n-1} \mathbb{Z} \hookrightarrow \mathbb{Z} / p^{n} \mathbb{Z}
$$

and each factor of this subnormal series is $\mathbb{Z} / p \mathbb{Z}$, which is simple. Any shorter chain of subgroups must have a factor $\mathbb{Z} / p^{k} \mathbb{Z}, k>1$.
[4] Question 2. The sublattice diagrams for the quaternion group \mathbf{Q}_{8} and the dihedral group \mathbf{D}_{4} are attached.

Using only these diagrams and the fact that both groups have 8 elements, explain why \mathbf{Q}_{8} has exactly 3 distinct composition series and \mathbf{D}_{8} has exactly 7 distinct composition series.
Solution: Since each group has 8 elements, subgroups can only have cardinality $1,2,4$, or 8 , and in these two cases, the cardinality of a subgroup can be identified by its height in the subgroup lattice. From the lengths of the chains, there are subgroups of every possible size. The only possible composition factor is $\mathbb{Z} / 2 \mathbb{Z}$. From the diagrams, we see in fact that any "covering pair" of subgroups has $\mathbb{Z} / 2 \mathbb{Z}$ as its quotient (and any subgroup of index 2 is normal). Therefore the paths through the subgroup lattice are, in each case, composition series. But \mathbf{Q}_{8} has 3 paths and \mathbf{D}_{8} has 7 paths.
Remark: The insightful way to solve this problem is to prove that in any group of order 2^{n}, a chain of subgroups of length $n+1$ is necessarily a composition series (the orders of the groups in such a chain are necessarily $1,2,4, \ldots, 2^{n}$) and so since each has index 2 in the following one, each subgroup is normal in its successor and the factor groups are all \mathbb{Z}_{2}, which is simple.

In fact, if you read the text section on nilpotent groups, you will find a proof of the the fact that every finite p-group is nilpotent, for roughly the same reasons as given here.
[3] Question 3. Prove that if G has a composition series and $1 \neq H \unlhd G$, then G has a composition series containing H.
Proof: WLOG $H \neq G$ as well. By the Schreier Refinement Theorem the subnormal series $1 \triangleleft H \triangleleft G$ and any composition series for G have a equivalent refinements, one of which necessarily contains H. After deleting duplications, since it is equivalent to a composition series, all its factors are simple, that is, it is itself a composition series.
[4] Question 4. Prove that $D_{2^{n}}$ is solvable for each n.
Hint: Of course you only need to be able to find one subnormal series with abelian factors; the work you did on the previous question and the diagram for D_{4} should give you a hint towards a fairly easy answer.
Proof: We saw in the previous solution that we get a sequence of groups each of index 2 in the next.

Consider $D_{2^{n+1}}=\left\langle\left\langle r, s: r^{2^{n+1}}=1, s^{2}=1, r s=s r^{-1}\right\rangle\right\rangle$. Let $t=r^{2}$. Then $t^{2^{n}}=$ $\left(r^{2}\right)^{2^{n}}=r^{2 \cdot 2^{n}}=1$ and $t s=r^{2} s=r s r^{-1}=s r^{-2}=s t_{1}$, so the subgroup generated by t and s is isomorphic to $D_{2^{n}}$. Therefore we get the descending chain of subgroups

$$
D_{2^{n+1}}>D_{2^{n}}>\cdots>D_{2}>1,
$$

each of index 2 in the one above, and hence normal with simple abelian factor $\mathbb{Z} / 2 \mathbb{Z}$.
Proof: And several of you came up with a much shorter proof. It is not actually necessary to find a composition series, as above.

Consider $D_{2^{n}}$, a group of order 2^{n+1}. Note that $\langle\langle r\rangle\rangle \cong \mathbb{Z} / 2^{n} / Z Z$, an abelian group of order 2^{n}, hence of index 2 in $D_{2^{n}}$. Therefore $D_{2^{n}} /\langle\langle r\rangle\rangle \cong \mathbb{Z} / 2 \mathbb{Z}$ and so the subnormal series $D_{2^{n}} \unrhd\langle\langle r\rangle\rangle \unrhd 1$ shows that $D_{2^{n}}$ is solvable.

Note that this same argument applies to

Question 5. Prove that:
[3] (b) Every homomorphic image of a solvable group is solvable.
Proof: Suppose

$$
G=G_{0} \geq G_{1} \geq G_{2} \geq \cdots \geq G_{n}=1
$$

with G_{i} / G_{i+1} abelian.
(a) Let H be a subgroup of G. Then $H \cap G_{i+1}$ is normal in $H \cap G_{i}$ since G_{i+1} is normal in G_{i}. Furthermore $\left(H \cap G_{i}\right) /\left(H \cap G_{i+1}\right) \cong G_{i+1}\left(H \cap G_{i}\right) / G_{i+1}$ by the Second Isomorphism Theorem, but the latter is a subgroup of the abelian group G_{i} / G_{i+1}. Therefore

$$
H=H \cap G_{0} \geq H \cap G_{1} \geq H \cap G_{2} \geq \cdots \geq H \cap G_{n}=1
$$

shows that H is solvable.
(b) Let $H \unlhd G$. Then $\left.\left(H G_{i+1}\right) / H \unlhd\left(H G_{i}\right) / H\right)$ for each i, and $\left.\left(H G_{i}\right) / H \unlhd\left(H G_{i+1}\right) / H\right) \cong$ $H G_{i} / H G_{i+1}$ by the First Isomorphism Theorem. But the map $G_{i} / G_{i+1} \rightarrow H G_{i} / H G_{i+1}$ defined by $g_{i} / G_{i+1} \mapsto g_{i} / H G_{i+1}$ is a well-defined homomorphism since $G_{i+1} \subseteq H G_{i+1}$ and is a surjection since $H \subseteq H G_{i+1}$. Therefore $H G_{i} / H G_{i+1}$ is the image of an abelian group and is therefore also abelian. Therefore

$$
G / H=H G_{0} / H \geq H G_{1} / H \geq H G_{2} / H \geq \cdots \geq H G_{n} / H=1
$$

shows that G / H is solvable.
You can work exactly the same proof by considering an epimorphism $\varphi: G \rightarrow K$ and setting $K_{i}=\varphi\left[G_{i}\right]$. (For if you set $H=\operatorname{ker}(\varphi)$, then $\left.K_{i} \cong H G_{i+1}\right) / H$.)

Supplementary notes on the dihedral group $D_{2^{n}}$.
Proposition D_{N} is solvable for all N.
D_{N} is nilpotent iff $N=2^{n}$ for some $n . D_{2^{n}}$ is nilpotent of class n.
Proof: Clearly $\langle\langle r\rangle\rangle \cong \mathbb{Z} / N \mathbb{Z}$, an abelian subgroup of order N, and hence of index 2 in D_{N}. Therefore it is normal, and the quotient is $\mathbb{Z} / 2 \mathbb{Z}$, so the subnormal series $D_{N} \unrhd\langle\langle r\rangle\rangle \unrhd 1$ shows that D_{N} is solvable.

For the second assertion, first we show that for any $m>2$, the centre of D_{m} is non-trivial iff $m=2 k$, in which case the centre is isomorphic to $\left\langle\left\langle r^{k}\right\rangle\right\rangle \cong \mathbb{Z}_{2}$. (Note that D_{2} is abelian and so is its own centre.)

Fix m. When can r^{k} be in the centre $(k<m)$? Certainly it must commute with s, so we have $s r^{k}=r^{k} s=s r^{-k}$, and so $r^{k}=r^{-k}$ or $r^{2 k}=1$. Since m is the least positive value for which $r^{m}=1,2 k=m$, that is, m is even. Since r^{k} trvially commutes with r, certainly in this case r^{k} is in the centre of $D_{2 k}$. What about an element of the form $r^{t} s$ for some t ? If it is in the centre, it must commute with r, and so $r\left(r^{t} s\right)=\left(r^{t} s\right) r=r^{t} r^{-1} s$, and therefore $r^{t+1}=r^{t-1}$, and so $r^{2}=1$. But we assume that $m>2$, so this is impossible. So for $m>2$, D_{m} has a centre iff $m=2 k$ for some k, in which case r^{k} generates the centre.
Remark: So we have immediately D_{m} is not nilpotent if m is odd, but is solvable whenever m is even. It follows from the rest of the argument that e.g., D_{6} is an example of a solvable group which is not nilpotent.

Now we show that for $k>1, G=D_{2 k} /\left\langle\left\langle r^{k}\right\rangle\right\rangle \cong D_{k}$. But this is easy: G is generated by the cosets \bar{r} and \bar{s} of r and of s respectively, and only r is collapsed: $\bar{s}^{2}=1, \bar{r} \bar{s}=\bar{s} \bar{r}^{-1}$, and $\bar{r}^{k}=1$, exactly the presentation of D_{k}.

In general, any natural number $N \geq 2$ can be written uniquely in the form $N=2^{n}(2 k+1)$ with $n, k \geq 0$. We claim that the upper central series of \mathbf{D}_{N} has the form

$$
\{1\}=Z_{0} \triangleleft Z_{1} \triangleleft \cdots \triangleleft Z_{n} \unlhd \mathbf{D}_{N}
$$

with equality at the last step if $k=0$ (i.e. N is a power of 2) and D_{N} / Z_{n} being centreless otherwise. If $n=0$ and $k>0$, we have seen that \mathbf{D}_{N} is centreless. For $n=m+1$, the centre Z_{1} has two elements and $D_{2^{m+1}(2 k+1)} / Z_{1} \cong D_{2^{m}(2 k+1)}$. So if the claim holds for $N=2^{m}(2 k+1)$, we have by inductive hypothesis an upper central series

$$
\{1\}=Z_{1} / Z_{1} \triangleleft Z_{2} / Z_{1} \triangleleft \cdots \triangleleft Z_{m+1} / Z_{1} \unlhd \mathbf{D}_{2^{m+1}(2 k+1)} / Z_{1} \cong \mathbf{D}_{2^{m}(2 k+1)}
$$

with equality if $k=0$ and $\left(D_{2^{m+1}(2 k+1)} / Z_{1}\right) /\left(Z_{m+1} / Z_{1}\right)$ being centreless otherwise. That is, for each $i, 1 \leq i<m+1, Z_{i+1} / Z_{1}$ is chosen so that $\left(Z_{i+1} / Z_{1}\right) /\left(Z_{i} / Z_{1}\right)$ is the centre of $\left(D_{2^{m+1}(2 k+1)} / Z_{1}\right) /\left(Z_{i} / Z_{1}\right)$. Now just apply the second isomorphism theorem to simplify these terms: Z_{i+1} is chosen so that Z_{i+1} / Z_{i} is the centre of $D_{2^{m+1}(2 k+1)} / Z_{i}$, that is,

$$
\{1\}=Z_{0} \triangleleft Z_{1} \triangleleft \cdots \triangleleft Z_{m+1} \unlhd D_{2^{m+1}(2 k+1)}
$$

is the upper central series of $D_{2^{m+1}(2 k+1)}$, with equality if $k=0$ and $D_{2^{m+1}(2 k+1)} / Z_{m+1}$ being centreless otherwise.

So we have the claim, and therefore if $N=2^{n}$ then D_{N} is nilpotent of class n, and if $N=2^{n}(2 k+1)$ with $k>0$ then D_{N} is not nilpotent.

As a final point, it follows from the construction that Z_{k} is generated by $r^{2^{n-k}}$ and so is isomorphic to the cyclic group of order 2^{k}.

