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Solutions

I couldn’t think of anything better than to ask you to “finish off” some of the things that I
only hinted at in the lecture about finitely presented abelian groups.

Homomorphisms between finitely generated abelian groups.
Question 1. Consider be elements of Zm (etc) as being represented by row vectors of integers.[6]

Let ei be the i-th standard basis vector.
(a) Let A be an m× n matrix over the integers. Show that the map

ϕA : Zm → Zn : a 7→ aA

defines an abelian group homomorphism.

Proof: If a, b ∈ Zm then (b−a)A = bA−aA by the usual rules for matrix multiplication.
So ϕA is a homomorphism of abelian groups.

Remark In fact, in a more general context it is a homomorphism of left Z-modules. All
that this means is that it respects scalar multiplication by integers as well: If z ∈ Z , then
(za)A = z(aA) , which of course is another elementary property of matrix multiplication.

(b) Suppose that ψ : Zm → Zn is an abelian group homomorphism. Define an m × n matrix
over the integers M(ψ) by setting the i-th row of M(ψ) to be ψ(ei) . Show that for all
a ∈ Zm , ψ(a) = aM(ψ) .

Proof: Let a =
∑m

i=1 ziei ∈ Zm .

Then ψ(a) =
∑m

i=1 ziψ(ei) and aM(ψ) =
∑m

i=1 zieiM(ψ) . So it suffices to show that
ψ(ei) = eiM(ψ) . But eiM(ψ) is the i-th row of M(ψ) , so the equality holds by definition

(c) Verify that ϕM(ψ) = ψ and M(ϕA) = A .

Proof: It suffices to check the first equation on the standard basis vectors.

ϕM(ψ)(ei) = eiM(ψ) = ψ(ei) .

It suffices to check the second equation row-by-row. The i-th row of M(ϕA) is ϕA(ei) =
eiA , that is, the i-th row of A .

Finitely presented abelian groups.

Definition 0.1 A finite presentation of an abelian group M consists of a tuple 〈 ε, X, Σ 〉 where
X is a finite set of variables, ε : X → M , and Σ is a finite set of abelian group words in X ,
such that each word w ∈ Σ evaluates to 0 in M , and M is “free” with respect to this property.
That is, if B is any other abelian group and b : X → B such that every word w ∈ Σ evaluates
to 0 in B , then there is a unique group homomorphism β : M → B such that the following
diagram commutes.
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It is normal to suppress the map ε in the notation and treat X as if it were a subset of M .
For instance, it is not hard to see that 〈 { a, b } , { 4a, 6b } 〉 is a presentation of the group

Z/4Z⊕Z/6Z . It is more traditional to write this presentation as something like 〈 a, b : 4a = 6b = 0 〉 .

Let 〈 ε, F 〉 be the free abelian group on X and Θ the intersection of all congruences Ψ on
F such that w ≡ 0(Ψ) for each w ∈ Σ , and \ the quotient map F → F/Θ .

Question 2. Prove that 〈 \ ◦ ε, X, F/Θ 〉 is the group finitely presented by Σ .[4]

Proof: So we have to show that the given data satisfies the appropriate universal diagram.

X

f
))
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f
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// F/Θ

ϕ
}}

A
We are given f : X → A where A is an abelian group such that every word in Σ evaluates

to 0 in A , and we have to find a homomorphism ϕ completing the diagram as shown.
But we get a homomorphism f since F is free on X . Since every word in Σ evaluates to 0

in A , ker(f) ⊇ Θ , and so f factors through F/Θ , as required.

Abstract presentations
We don’t have the proper context in which to give this definition. Just assume that V is

a variety in which there is an algebra 0 and it has “all the right properties”. We will only be
working in the variety of abelian groups, where this is indeed the case.

Definition 0.2 An algebra A in a variety V is finitely presented if there is an exact sequence

Fm
ψ−→ Fn

ϕ−→ A −→ 0

where Fm and Fn are the free algebras in V on m and n generators respectively, and exact means
that at each algebra in the sequence the image of the incoming homomorphism is the kernel of
the outgoing homomorphism. That is, im(ψ) = ker(ϕ) and im(ϕ) = A : ϕ is a surjection.

The purpose of this exercise is to help you see that the two definitions of finitely presented
abelian groups that we have given are equivalent.
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But to start off:
Question 3. Show that every finitely generated abelian group is finitely presented.[2]

Proof: Suppose A is an n-generated abelian group. Then there is a surjection ϕ from the
free abelian group Fn onto A . Let K ≤ Fn be the kernel of ϕ . Then since K is a subgroup of
a finitely generated free abelian group, K is also free abelian, say on m generators. So there is
an isomorphism ψ of Fm onto K , thus

Fm
ψ−→ Fn

ϕ−→ A −→ 0

is a finite presentation of A .
Hint: In any variety whatsoever, every finitely generated algebra is the image of a finitely
generated free algebra. Use the theorem that a subgroup of a finitely generated free abelian
group is finitely generated free abelian.

Note that a finite set Σ of group words (say in variables x1, . . . xn) is just a finite set of
integer linear combinations of those variables; and if we assert that those linear combinations are
all 0, we are really just asserting a matrix equation Ax = 0 for an m×n integer matrix, where m
is the number of equations. Let ψA be the homomorphism defined in 1(a), K = im(ψA) ⊆ Zn ,
and M = Zn/K .

Consider the sequence of homomorphisms

Z(m) ψA−→ Z(n) \−→M −→ 0

Let m1, . . . , mn be the images in M of the standard basis vectors of Zn , and m the column
vector of these elements.

Question 4. Show that in M , Am = 0 .[8]

Proof: If you see the “fast” way of writing out the explanation, the explanation itself is
barely worth 2 or 3 marks. The 8 points reflect the difficulty of seeing your way through to the
end, not the difficulty of the “most efficient solution”.

Am = A

 \(e1)
...

\(en)

 = A\(In) = \(AIn) = \(ImA) = 0 ,

The first few equalities are all just matrix manipulations, and the final step follows since the
rows of ImA are by definition in the kernel of \ .

Hints over. . .
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Hints: On the one hand this is trivial. On the other hand, it requires some real “thinking
outside the box” to get the notation right.

Here is a rather rambling discussion of relevant matters. In the end, with the proper
understanding of the meaning of the components, I can write down the equations that prove
this result in one line: but you need to write out some things to explain where the equations
come from. All of that occurs or is hinted at in what follows:

Let Im , In be the respective identity matrices.
First consideration: Row i of A is ψA(ei) . Imagine stacking up the standard basis vectors.

They make Im . So if we think of stacking up the images of ψA as rows of Zn , all we are doing
is looking at ImA , that is, A . And since the standard basis vectors of Zm generate Zm , the
rows of A generate the image K of ψA .

Now the natural map sends each standard basis vector ei of Zn to the corresponding gen-
erator mi of M . Stacking those up again gives us \(In) = m .

It should be fairly clear (and you can use it with out proof) that if θ is any abelian group
homomorphism, A an integer matrix, and b a column vector of elements of the correct length,
then θ(Ab) = Aθ(b) , coordinate by coordinate, and similarily, with multiplication on the other
side, for row vectors.

Stringing all these ideas together in the proper order, you can then prove the required result,
that Am = 0 . I’m looking for a “clean” exposition with the right calculations.

(It follows from Questions 3 and 4 with only a little extra work that then, once again, M is
the abelian group presented by 〈X, Σ 〉 .)

TOTAL[20]
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