MATH 3322 Problem Set 2

February 5, 2019

Solutions

[6] Question 1. A group $\left\langle G ;,^{-1}, \mathbf{e}\right\rangle$ is of exponent n if for all $g \in G, x^{n}=\mathbf{e}$. Equivalently, for an abelian group $A, n a=0$ for all $a \in A$.
\mathbb{Z}_{n} is shorthand for the group of integers modulo n, more correctly written as $\mathbb{Z} / n \mathbb{Z}$. We take the elements of \mathbb{Z}_{n} to be $\{0,1, \ldots, n-1\}$.
[1] (a) Let $\langle A ;+,-, 0\rangle$ be an abelian group and $a \in A$ such that $n a=0$. Prove that there is a unique homomorphism $\varphi: \mathbb{Z}_{n} \rightarrow A$ such that $\varphi(1)=a$.

Proof: Note that in $\mathbb{Z}_{n}, k=k \times 1$. So if we want a homomorphism such that $\varphi(1)=a$, then necessrily $\varphi(k)=k a$. Now for any integers z, z^{\prime}, if $z \times 1=z^{\prime} \times 1$ in \mathbb{Z}_{n}, then $n \mid\left(z-z^{\prime}\right)$ and so in $A,\left(z-z^{\prime}\right) a=0$. Thus φ is well-defined. It is clearly a homomorhism.
Note: if $n a \neq 0$, the map described is not well-defined.
(b) Let X be any non-empty set. Consider the weak direct power $\mathbb{Z}_{n}^{(X)}$. [For details on weak direct powers and direct sums, see the next exercise.] Define $\varepsilon: X \rightarrow \mathbb{Z}_{n}^{(X)}$ by $\varepsilon(x)_{x}=1$, $\varepsilon(x)_{y}=0$ for $y \neq x, y \in X$.
Prove that $\left(\varepsilon, \mathbb{Z}_{n}^{(X)}\right)$ is the free abelian group of exponent n on X.
Proof: Suppose that $h: X \rightarrow A$, where A is an abelian group of exponent n. Then in $A, n h(x)=0$ for all $x \in X$.
Therefore by part (a), there is a unique, well-defined, group homomorphism from the x-th component of $\mathbb{Z}_{n}^{(X)}$ to A, sending the generator (that is, $\left.\varepsilon(x)\right)$ to $h(x)$ given by $k \varepsilon(x) \mapsto$ $k h(x)$.
Every element of $\mathbb{Z}_{n}^{(X)}$ is (uniquely) a finite sum of multiples of the generators, $a=$ $\sum_{x \in X} k_{x} \mathbf{e}_{x}$, where $k_{x}=0$ almost everywhere, and without loss of generality, $0 \leq k_{x}<$ n. Thus there is only one way to define a homomorphism extending $h: \sum_{x \in X} k_{x} \mathbf{e}_{x} \mapsto$ $\sum_{x \in X} k_{x} h(x)$.
[8] Question 2. Let $\left(A_{i}\right)_{i \in I}$ be a non-empty family of abelian groups. Let

$$
\bigoplus_{i \in I} A_{i}=\left\{\bar{a} \in \prod_{i \in I} A_{i}: a_{i}=0 \text { for all but finitely many } i \in I\right\} .
$$

For each $i \in I$, let $\varepsilon_{i}: A_{i} \rightarrow \bigoplus_{i \in I} A_{i}$ be defined by

$$
\varepsilon_{i}(a)_{j}=\left\{\begin{array}{ll}
a & j=i \\
0 & j \neq i
\end{array}, \text { for each } a \in A_{i} .\right.
$$

$\left(\bigoplus_{i \in I} A_{i},\left(\varepsilon_{i}\right)_{i \in I}\right)$ is called the direct sum of the abelian groups $\left(A_{i}\right)_{i \in I}$. If all the A_{i} are equal to a single group A, we write it as $A^{(I)}$, and call it the weak direct power of A.
(a) Prove that $\bigoplus_{i \in I} A_{i}$ is a subgroup of $\prod_{i \in I} A_{i}$, and that each ε_{i} is a group homomorphism.

Proof: Operations on the direct sum or direct product are defined component-by-component. Clearly if \bar{a} and \bar{b} are zero on all but a finite number of components, so is $\bar{a}-\bar{b} . \varepsilon_{i}$ sends A_{i} to elements which are non-zero on at most component i, so operations on the images are just the operations in A_{i}, so ε_{i} is a homomorphism.
(b) Prove that $\bigoplus_{i \in I} A_{i}$ satisfies the universal property described by the following diagram:

where M is any abelian group and $e_{i}: A_{i} \rightarrow M$ is a family of group homomorphisms.
[For clarity: This means that we are given the diagram with all components i simultaneously, and complete it by a single map φ.]
Proof: Note that $1(\mathrm{~b})$ and $2(\mathrm{~b})$ involve essentially the same argument.
Every element \bar{a} of the direct sum has $\bar{a}_{i}=0$ for all but finitely many $i \in I$. Therefore every element of the direct sum can be written in one and only one way as a (finite) sum of non-zero elements of the images of the various maps ε_{i}. Any homomorphism ψ from the direct sum to M has to respect these sums, $\psi(\bar{a})=\sum_{t=1}^{n} \psi\left(a_{i_{t}}\right)$, where i_{1}, \ldots, i_{n} are the coordinates on which \bar{a} is non-zero. [But notice what we have done here: we have identified/confused an element $a \in A_{i}$ with its image $\varepsilon_{i}(a)$ in the direct sum. This is "standard practice", and reduces the overhead of notation.]
So, given the maps e_{i}, there is one and only one way to define φ completing the diagram, $\varphi(\bar{a})=\sum_{t=1}^{n} e_{i_{t}}\left(a_{i_{t}}\right)$. The result is clearly a homomorphism as that only depends on addition working coordinate by coordinate.

If you want a more careful treatment of "where things are", remember that the projection maps are homomorphisms, and that $\bar{a}=\left\langle\pi_{i}(\bar{a})\right\rangle_{i \in I}$. So a more formal definition of φ would be

$$
\varphi(\bar{a})=\sum_{i \in I} e_{i}\left(\pi_{i}(\bar{a})\right),
$$

the sum being well-defined since $\pi_{i}(\bar{a})$ is zero almost everywhere.
[6] Question 3. Let $\left(G_{i}\right)_{i \in I}$ be a non-empty family of groups. Let

$$
\prod_{i \in I}^{W} G_{i}=\left\{\bar{a} \in \prod_{i \in I} G_{i}: a_{i}=\mathbf{e}_{i} \text { for all but finitely many } i \in I\right\}
$$

Let $\varepsilon_{i}: G_{i} \rightarrow \prod_{i \in I}{ }^{W} G_{i}$ be defined by

$$
\varepsilon_{i}(a)_{j}= \begin{cases}a & j=i \\ \mathbf{e}_{j} & j \neq i\end{cases}
$$

Just as in Question 2, it is easy to see that $\prod_{i \in I}{ }^{W} G_{i}$ is a subgroup of $\prod_{i \in I} G_{i}$, and that each ε_{i} is an embedding. You can assume this result without proof.
(a) Show that $\prod_{i \in I}^{W} G_{i}$ is a normal subgroup of $\prod_{i \in I} G_{i}$.

Proof: Let $\bar{a} \in \prod_{i \in I}^{W} G_{i}$ and $\bar{b} \in \prod_{i \in I} G_{i}$. We need to show that $\bar{b}^{-1} \bar{a} \bar{b}=\mathbf{e}$.
But \bar{a} is the identity almost everywhere. So on any coordinate i on which \bar{a} is the identity, $\left(\bar{b}^{-1} \bar{a} \bar{b}\right)_{i}=b_{i}^{-1} \mathbf{e} b_{i}=\mathbf{e}$. Therefore $\bar{b}^{-1} \bar{a} \bar{b}$ is the identity almost everywhere.
[1] (b) Show that for any group G and any $g \in G$, the map $\psi: \mathbb{Z} \rightarrow G: z \mapsto g^{z}$ is a group homomorphism that sends $1 \in \mathbb{Z}$ to g.
Proof: $\quad \psi(z+w)=g^{z+w}=g^{z} g^{w}$, so ψ is a homomorphism.
[This shows that \mathbb{Z} is not just the free abelian group on one generator, but in fact it is the free group on one generator.]
(c) Show that if G is a group with $a, b \in G$ such that $a b \neq b a$, then the pair of homomorphisms $e_{1}: \mathbb{Z} \rightarrow z \mapsto a^{z}, e_{2}: \mathbb{Z} \rightarrow z \mapsto b^{z}$, does not lift to a homomorphism $\mathbb{Z} \times \mathbb{Z} \rightarrow G$.
Proof: Implicit here is that e_{1} is acting on the first component of $\mathbb{Z} \times \mathbb{Z}$, and e_{2} on the second. $\langle 1,0\rangle$ and $\langle 0,1\rangle$ commute in $\mathbb{Z} \times \mathbb{Z}$, but a and b do not commute in G. Homomorphisms preserve identities, so a and b cannot be the images of $\langle 1,0\rangle$ and $\langle 0,1\rangle$
[This shows that the weak direct product of groups does not satisfy (for the class of all groups) the universal property described in 2(b), even for a product of only two groups! In particular, \mathbb{Z}^{2} is not the free group on two generators.]

Remark: In abstract classes of algebras, the universal property 2(b) defines an object called the free product . Abelian groups (and more generally modules over a ring) are unusual in that the free product has a simple description by the direct sum. One of the basic properties of the free product is that if \mathcal{F}_{1} is the free algebra on one generator in a variety \mathcal{V}, then the free product of X copies of \mathcal{F}_{1} is the free algebra on X.
[20] TOTAL

