MATH 3322 Problem Set 1 January 29, 2019

Solutions

Recall the following definitions and notation from the handout on Universal Algebra.

An algebraic language \mathcal{L} is determined by a set $(\mathbf{f}_i)_{i \in I}$ of function symbols, each \mathbf{f}_i a a $\nu(i)$ -ary function symbol (where $\nu: I \to \omega \setminus \{0\}$); and a set $(\mathbf{c}_k)_{k \in k}$ of constant symbols.

An abstract algebra \mathcal{A} for \mathcal{L} consists of a non-empty set A and actual operations and elements on A interpreting the symbols of \mathcal{L} .

An assignment of values in \mathcal{A} is a map α : variables $\rightarrow A$.

You will need to review and refer to the definitions of subalgebra, homomorphism, and congruence, and Definition 0.4, how to evaluate a term in an algebra.

Here is the example from class:

Lemma 0.1 Let $\mathcal{B} \subseteq \mathcal{A}$ be \mathcal{L} -algebras, and \mathbf{t} an \mathcal{L} -term, α an assignment in \mathcal{A} . Then

$$\mathbf{t}^{\mathcal{B}}[\alpha] = \mathbf{t}^{\mathcal{A}}[\alpha]$$

Proof:

poof: If **t** is a variable v, then $\mathbf{t}^{\mathcal{B}}[\alpha] = \alpha(v) = \mathbf{t}^{\mathcal{A}}[\alpha]$. If **t** is a constant symbol **c**, then $\mathbf{t}^{\mathcal{B}}[\alpha] = \mathbf{c}^{\mathcal{B}} = \mathbf{c}^{\mathcal{A}} = \mathbf{t}^{\mathcal{A}}[\alpha]$; the first and last equalities by the definition of evaluation, and the middle by the definition of subalgebra.

If t is a compound term $\mathbf{f}(\mathbf{t}_1, \ldots, \mathbf{t}_n)$ and the Lemma holds for $\mathbf{t}_1, \ldots, \mathbf{t}_n$, then

$$\mathbf{t}^{\mathcal{B}}[\alpha] = \mathbf{f}^{\mathcal{B}}(\mathbf{t}_{1}^{\ \mathcal{B}}[\alpha], \ldots, \mathbf{t}_{n}^{\ \mathcal{B}}[\alpha]) = \mathbf{f}^{\mathcal{A}}(\mathbf{t}_{1}^{\ \mathcal{A}}[\alpha], \ldots, \mathbf{t}_{n}^{\ \mathcal{A}}[\alpha]) = \mathbf{t}^{\mathcal{A}}[\alpha];$$

the first and last equalities by the definition of evaluations, and the middle one by the definition of subalgebra (for f) and the assumption on the terms $\mathbf{t}_1, \ldots, \mathbf{t}_n$.

Question 1. Let $\mathcal{B} \subseteq \mathcal{A}$ be \mathcal{L} -algebras. [4]

(a) Prove that if an identity $\mathbf{s} = \mathbf{t}$ holds in \mathcal{A} , then the identity also holds in \mathcal{B} .

Observe that since $B \subseteq A$, an assignment in \mathcal{B} is automatically an assignment in **Proof:** \mathcal{A} . So for any assignment α in \mathcal{B} ,

$$\mathbf{s}^{\mathcal{B}}[\alpha] = \mathbf{s}^{\mathcal{A}}[\alpha] = \mathbf{t}^{\mathcal{A}}[\alpha] = \mathbf{s}^{\mathcal{B}}[\alpha],$$

the first and third inequalities by the lemma in the introduction, and the middle equality because the identity holds in \mathcal{A} . Hence the identity holds in \mathcal{B} .

(b) Give a simple example in groups to show that the converse does not hold.

Note that *every* identity holds in the trivial group which is a subgroup of every Solution: group. But clearly there are groups satisfying non-trivial identities!

Question 2. Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a homomorphism of \mathcal{L} -algebras, \mathbf{t} an \mathcal{L} -term, and α an assignment in \mathcal{A} .

[3] (a) Prove that

 $\varphi(\mathbf{t}^{\mathcal{A}}[\alpha]) = \mathbf{t}^{\mathcal{B}}(\varphi \circ \alpha) \,.$

Proof: By induction on the complexity of \mathbf{t} . If \mathbf{t} is a variable the result is immediate by the definition of the assignment $\varphi \circ \alpha$, if \mathbf{t} is a constant symbol, the result is immediate by the definition of homomorphism, and if \mathbf{t} is a compound term $\mathbf{f}(\mathbf{t}_1, \ldots, \mathbf{t}_n)$ where (a) hold for $\mathbf{t}_1, \ldots, \mathbf{t}_n$, then

$$\begin{split} \varphi(\mathbf{t}^{\mathcal{A}}[\alpha]) &= \varphi(\mathbf{f}^{\mathcal{A}}(\mathbf{t}_{1}^{\mathcal{A}}[\alpha], \dots, \mathbf{t}_{n}^{\mathcal{A}}[\alpha]) \\ &= \mathbf{f}^{\mathcal{B}}(\varphi(\mathbf{t}_{1}^{\mathcal{A}}[\alpha]), \dots, \varphi(\mathbf{t}_{n}^{\mathcal{A}}[\alpha])) \\ &= \mathbf{f}^{\mathcal{B}}(\mathbf{t}_{1}^{\mathcal{B}}[\varphi \circ \alpha], \dots, \mathbf{t}_{n}^{\mathcal{B}}[\varphi \circ \alpha]) \\ &= \mathbf{t}^{\mathcal{A}}[\varphi \circ \alpha] \end{split}$$

[3] (b) Prove that if φ is surjective, and if an identity $\mathbf{s} = \mathbf{t}$ holds in \mathcal{A} , then the identity also holds in \mathcal{B} .

Proof: Suppose that φ is surjective and the identity $\mathbf{s} = \mathbf{t}$ holds in \mathcal{A} .

Let β be an assignment in \mathcal{B} . [We need to verify that $\mathbf{s}^{\mathcal{B}}[\beta] = \mathbf{t}^{\mathcal{B}}[\beta]$.] Since φ is surjective, for each variable v and $\beta(v) = b \in B$, we can find $a \in A$ such that $\varphi(a) = b$. Thus we can define an assignment α in A so that for all variables v, $\varphi(\alpha(v)) = \beta(b)$, that is, $\varphi \circ \alpha = \beta$.

Therefore

$$\mathbf{s}^{\mathcal{B}}[\beta] = \mathbf{s}^{\mathcal{B}}[\varphi \circ \alpha] = \varphi(\mathbf{s}^{\mathcal{A}}[\alpha]) = \varphi(\mathbf{t}^{\mathcal{A}}[\alpha]) = \mathbf{t}^{\mathcal{B}}[\varphi \circ \alpha] = \mathbf{t}^{\mathcal{B}}[\beta].$$

The second and fourth equalities hold since φ is a homorphism, and the middle equality since $\mathbf{s} = \mathbf{t}$ holds in \mathcal{A} .

[2] (c) Find a simple example in groups to show that the converse to (b) does not hold.

Solution: Same answer as 1(b): every identity holds in the trivial group; and furthermore, the identity is a homomorphic image of every group.

- [8] **Question 3.** Let $(\mathcal{A}_i)_{i \in I}$ be a family of \mathcal{L} -algebras and $\mathcal{P} = \prod_{i \in I} \mathcal{A}_i$. Define relations $(\Theta_i)_{i \in I}$ on \mathcal{P} by $\overline{a} \equiv \overline{b}(\Theta_i)$ iff $a_i = b_i$. It's obvious that each Θ_i is an equivalence relation, and you don't have to prove this.
 - (a) Prove that each Θ_i is a congruence relation.

Proof: If **f** is *n*-ary and $\overline{a}_1, \ldots, \overline{a}_n, \overline{a}'_1, \ldots, \overline{a}'_n \in \mathcal{P}$ are such that $\overline{a}_j \equiv \overline{a}'_j(\Theta_i)$ for each j, $(1 \leq j \leq n)$, then $a_{ji} = a'_{ji}$ for each j, $(1 \leq j \leq n)$. Thus $\mathbf{f}_i^{\mathcal{A}}(a_{1i}, \ldots, a_{ni}) = \mathbf{f}_i^{\mathcal{A}}(a'_{1i}, \ldots, a'_{ni})$. Therefore $\mathbf{f}^{\mathcal{P}}(\overline{a}_1, \ldots, \overline{a}_n) \equiv \mathbf{f}^{\mathcal{P}}(\overline{a}'_1, \ldots, \overline{a}'_n)(\Theta_i)$.

Hence Θ_i is a congruence relation.

(b) Prove that $\mathcal{P}/\Theta_i \cong \mathcal{A}_i$ by the map $\overline{a}/\Theta_i \mapsto a_i$.

Proof: First of all, the map is well-defined because Θ_i depends only on the *i*-th coordinate; it is onto because all of \mathcal{A}_i is used in the construction of a product; it is a homomorphism because Θ_i is a congruence relation; so the only thing that needs any checking at all is that it is one-to-one. But $a_i = a'_i$ implies $\overline{a} \equiv \overline{a}'(\Theta_i)$.

(a),(b) **Solution:** A handful of you were smarter than me and observed (for (b)) that Θ_i is the kernel of the *i*-th projection map, and therefore (b) is immediate by the first isomorphism theorem. One of you was smarter than everyone else, and made the observation in (a), so of course Θ_i is trivially a congruence relation!

Therefore, if solved by the "best method", (a) and (b) are only one point questions.

(c) Prove that $\bigwedge_{i \in I} \Theta_i$ is "equality".

(That is, show that if $\overline{a} \equiv \overline{b}(\Theta_i)$ for all $i \in I$, then $\overline{a} = \overline{b}$.)

Proof: $\overline{a} \equiv \overline{b}(\Theta_i)$ for all $i \in I$ iff $a_i = b_i$ for all $i \in I$ iff $\overline{a} = \overline{b}$.

(d) Prove that if $i \neq j \in I$, then $\Theta_i \vee \Theta_j = \iota$ (where ι is the "total" relation $\overline{a} \equiv \overline{b}(\iota)$ for all $\overline{a}, \overline{b}$.)

[Hint: Let \overline{c} agree with \overline{b} on all indices, except $c_i = a_i$, and then imitate the proof for a product of two groups given in class.)

Proof: Given any \overline{a} and \overline{b} in the product, define \overline{c} by $c_k = b_k$ for $k \neq i$, and $c_i = a_i$. Then $\overline{c} \equiv \overline{b}(\Theta_j)$ since $j \neq i$, and $\overline{c} \equiv \overline{a}(\Theta_i)$ by the choice of c_i , Both Θ_i and Θ_j imply $\Theta_i \lor \Theta_j$ by definition of " \lor ", so by transitivity $\overline{a} \equiv \overline{b}(\Theta_i \lor \Theta_j)$.

[20] TOTAL

Remark: Question 2 Part (d) is not the most general statement. In fact a simple modification of the proof suggested for this part proves that if $i \neq j \in I$, then

$$\Theta_i \vee \bigwedge_{j \in I, \, j \neq i} \Theta_j = \iota$$

Proof: In fact, clearly $\overline{c} \equiv \overline{b}(\Theta_j)$ for all $j \neq i$, which is all we need.