MATH 3322 Problem Set 1

January 29, 2019

Solutions

Recall the following definitions and notation from the handout on Universal Algebra.
An algebraic language \mathcal{L} is determined by a set $\left(\mathbf{f}_{i}\right)_{i \in I}$ of function symbols, each \mathbf{f}_{i} a a $\nu(i)$-ary function symbol (where $\nu: I \rightarrow \omega \backslash\{0\}$); and a set $\left(\mathbf{c}_{k}\right)_{k \in k}$ of constant symbols.

An abstract algebra \mathcal{A} for \mathcal{L} consists of a non-empty set A and actual operations and elements on A interpreting the symbols of \mathcal{L}.

An assignment of values in \mathcal{A} is a map α : variables $\rightarrow A$.
You will need to review and refer to the definitions of subalgebra, homomorphism, and congruence, and Definition 0.4, how to evaluate a term in an algebra.

Here is the example from class:
Lemma 0.1 Let $\mathcal{B} \subseteq \mathcal{A}$ be \mathcal{L}-algebras, and \mathbf{t} an \mathcal{L}-term, α an assignment in \mathcal{A}. Then

$$
\mathbf{t}^{\mathcal{B}}[\alpha]=\mathbf{t}^{\mathcal{A}}[\alpha]
$$

Proof: If \mathbf{t} is a variable v, then $\mathbf{t}^{\mathcal{B}}[\alpha]=\alpha(v)=\mathbf{t}^{\mathcal{A}}[\alpha]$.
If \mathbf{t} is a constant symbol \mathbf{c}, then $\mathbf{t}^{\mathcal{B}}[\alpha]=\mathbf{c}^{\mathcal{B}}=\mathbf{c}^{\mathcal{A}}=\mathbf{t}^{\mathcal{A}}[\alpha]$; the first and last equalities by the definition of evaluation, and the middle by the definition of subalgebra.

If \mathbf{t} is a compound term $\mathbf{f}\left(\mathbf{t}_{1}, \ldots, \mathbf{t}_{n}\right)$ and the Lemma holds for $\mathbf{t}_{1}, \ldots, \mathbf{t}_{n}$, then

$$
\mathbf{t}^{\mathcal{B}}[\alpha]=\mathbf{f}^{\mathcal{B}}\left(\mathbf{t}_{1}{ }^{\mathcal{B}}[\alpha], \ldots, \mathbf{t}_{n}{ }^{\mathcal{B}}[\alpha]\right)=\mathbf{f}^{\mathcal{A}}\left(\mathbf{t}_{1}{ }^{\mathcal{A}}[\alpha], \ldots, \mathbf{t}_{n}{ }^{\mathcal{A}}[\alpha]\right)=\mathbf{t}^{\mathcal{A}}[\alpha] ;
$$

the first and last equalities by the definition of evaluations, and the middle one by the definition of subalgebra (for \mathbf{f}) and the assumption on the terms $\mathbf{t}_{1}, \ldots, \mathbf{t}_{n}$.
[4] Question 1. Let $\mathcal{B} \subseteq \mathcal{A}$ be \mathcal{L}-algebras.
(a) Prove that if an identity $\mathbf{s}=\mathbf{t}$ holds in \mathcal{A}, then the identity also holds in \mathcal{B}.

Proof: Observe that since $B \subseteq A$, an assignment in \mathcal{B} is automatically an assignment in \mathcal{A}. So for any assignment α in \mathcal{B},

$$
\mathbf{s}^{\mathcal{B}}[\alpha]=\mathbf{s}^{\mathcal{A}}[\alpha]=\mathbf{t}^{\mathcal{A}}[\alpha]=\mathbf{s}^{\mathcal{B}}[\alpha],
$$

the first and third inequalities by the lemma in the introduction, and the middle equality because the identity holds in \mathcal{A}. Hence the identity holds in \mathcal{B}.
(b) Give a simple example in groups to show that the converse does not hold.

Solution: Note that every identity holds in the trivial group which is a subgroup of every group. But clearly there are groups satisfying non-trivial identities!

Question 2. Let $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a homomorphism of \mathcal{L}-algebras, t an \mathcal{L}-term, and α an assignment in \mathcal{A}.
(a) Prove that

$$
\begin{equation*}
\varphi\left(\mathbf{t}^{\mathcal{A}}[\alpha]\right)=\mathbf{t}^{\mathcal{B}}(\varphi \circ \alpha) \tag{3}
\end{equation*}
$$

Proof: By induction on the complexity of \mathbf{t}. If \mathbf{t} is a variable the result is immediate by the definition of the assignment $\varphi \circ \alpha$, if \mathbf{t} is a constant symbol, the result is immediate by the definition of homomorphism, and if \mathbf{t} is a compound term $\mathbf{f}\left(\mathbf{t}_{1}, \ldots, \mathbf{t}_{n}\right)$ where (a) hold for $\mathbf{t}_{1}, \ldots, \mathbf{t}_{n}$, then

$$
\begin{aligned}
\varphi\left(\mathbf{t}^{\mathcal{A}}[\alpha]\right) & =\varphi\left(\mathbf{f}^{\mathcal{A}}\left(\mathbf{t}_{1}^{\mathcal{A}}[\alpha], \ldots, \mathbf{t}_{n}^{\mathcal{A}}[\alpha]\right)\right. \\
& =\mathbf{f}^{\mathcal{B}}\left(\varphi\left(\mathbf{t}_{1}^{\mathcal{A}}[\alpha]\right), \ldots, \varphi\left(\mathbf{t}_{n}^{\mathcal{A}}[\alpha]\right)\right) \\
& =\mathbf{f}^{\mathcal{B}}\left(\mathbf{t}_{1}^{\mathcal{B}}[\varphi \circ \alpha], \ldots, \mathbf{t}_{n}^{\mathcal{B}}[\varphi \circ \alpha]\right) \\
& =\mathbf{t}^{\mathcal{A}}[\varphi \circ \alpha]
\end{aligned}
$$

(b) Prove that if φ is surjective, and if an identity $\mathbf{s}=\mathbf{t}$ holds in \mathcal{A}, then the identity also holds in \mathcal{B}.
Proof: Suppose that φ is surjective and the identity $\mathbf{s}=\mathbf{t}$ holds in \mathcal{A}.
Let β be an assignment in \mathcal{B}. [We need to verify that $\mathbf{s}^{\mathcal{B}}[\beta]=\mathbf{t}^{\mathcal{B}}[\beta]$.] Since φ is surjective, for each variable v and $\beta(v)=b \in B$, we can find $a \in A$ such that $\varphi(a)=b$. Thus we can define an assignment α in A so that for all variables $v, \varphi(\alpha(v))=\beta(b)$, that is, $\varphi \circ \alpha=\beta$.
Therefore

$$
\mathbf{s}^{\mathcal{B}}[\beta]=\mathbf{s}^{\mathcal{B}}[\varphi \circ \alpha]=\varphi\left(\mathbf{s}^{\mathcal{A}}[\alpha]\right)=\varphi\left(\mathbf{t}^{\mathcal{A}}[\alpha]\right)=\mathbf{t}^{\mathcal{B}}[\varphi \circ \alpha]=\mathbf{t}^{\mathcal{B}}[\beta] .
$$

The second and fourth equalities hold since φ is a homorphism, and the middle equality since $\mathbf{s}=\mathbf{t}$ holds in \mathcal{A}.
[2] (c) Find a simple example in groups to show that the converse to (b) does not hold.
Solution: Same answer as 1(b): every identity holds in the trivial group; and furthermore, the identity is a homomorphic image of every group.
[8] \quad Question 3. Let $\left(\mathcal{A}_{i}\right)_{i \in I}$ be a family of \mathcal{L}-algebras and $\mathcal{P}=\prod_{i \in I} \mathcal{A}_{i}$.
Define relations $\left(\Theta_{i}\right)_{i \in I}$ on \mathcal{P} by $\bar{a} \equiv \bar{b}\left(\Theta_{i}\right)$ iff $a_{i}=b_{i}$. It's obvious that each Θ_{i} is an equivalence relation, and you don't have to prove this.
(a) Prove that each Θ_{i} is a congruence relation.

Proof: If \mathbf{f} is n-ary and $\bar{a}_{1}, \ldots, \bar{a}_{n}, \bar{a}_{1}^{\prime}, \ldots, \bar{a}_{n}^{\prime} \in \mathcal{P}$ are such that $\bar{a}_{j} \equiv \bar{a}_{j}^{\prime}\left(\Theta_{i}\right)$ for each $j,(1 \leq j \leq n)$, then $a_{j i}=a_{j i}^{\prime}$ for each $j,(1 \leq j \leq n)$. Thus $\mathbf{f}_{i}^{\mathcal{A}}\left(a_{1 i}, \ldots, a_{n i}\right)=$ $\mathbf{f}_{i}^{\mathcal{A}}\left(a_{1 i}^{\prime}, \ldots, a_{n i}^{\prime}\right)$. Therefore $\mathbf{f}^{\mathcal{P}}\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right) \equiv \mathbf{f}^{\mathcal{P}}\left(\bar{a}_{1}^{\prime}, \ldots, \bar{a}_{n}^{\prime}\right)\left(\Theta_{i}\right)$.
Hence Θ_{i} is a congruence relation.
(b) Prove that $\mathcal{P} / \Theta_{i} \cong \mathcal{A}_{i}$ by the map $\bar{a} / \Theta_{i} \mapsto a_{i}$.

Proof: First of all, the map is well-defined because Θ_{i} depends only on the i-th coordinate; it is onto because all of \mathcal{A}_{i} is used in the construction of a product; it is a homomorphism because Θ_{i} is a congruence relation; so the only thing that needs any checking at all is that it is one-to-one. But $a_{i}=a_{i}^{\prime}$ implies $\bar{a} \equiv \bar{a}^{\prime}\left(\Theta_{i}\right)$.
(a),(b) Solution: A handful of you were smarter than me and observed (for (b)) that Θ_{i} is the kernel of the i-th projection map, and therefore (b) is immediate by the first isomorphism theorem. One of you was smarter than everyone else, and made the observation in (a), so of course Θ_{i} is trivially a congruence relation!

Therefore, if solved by the "best method", (a) and (b) are only one point questions.
(c) Prove that $\bigwedge_{i \in I} \Theta_{i}$ is "equality". (That is, show that if $\bar{a} \equiv \bar{b}\left(\Theta_{i}\right)$ for all $i \in I$, then $\bar{a}=\bar{b}$.)
Proof: $\quad \bar{a} \equiv \bar{b}\left(\Theta_{i}\right)$ for all $i \in I$ iff $a_{i}=b_{i}$ for all $i \in I$ iff $\bar{a}=\bar{b}$.
(d) Prove that if $i \neq j \in I$, then $\Theta_{i} \vee \Theta_{j}=\iota$ (where ι is the "total" relation $\bar{a} \equiv \bar{b}(\iota)$ for all \bar{a}, \bar{b}.)
[Hint: Let \bar{c} agree with \bar{b} on all indices, except $c_{i}=a_{i}$, and then imitate the proof for a product of two groups given in class.)
Proof: Given any \bar{a} and \bar{b} in the product, define \bar{c} by $c_{k}=b_{k}$ for $k \neq i$, and $c_{i}=a_{i}$. Then $\bar{c} \equiv \bar{b}\left(\Theta_{j}\right)$ since $j \neq i$, and $\bar{c} \equiv \bar{a}\left(\Theta_{i}\right)$ by the choice of c_{i}, Both Θ_{i} and Θ_{j} imply $\Theta_{i} \vee \Theta_{j}$ by definition of " \vee ", so by transitivity $\bar{a} \equiv \bar{b}\left(\Theta_{i} \vee \Theta_{j}\right)$.
[20] TOTAL

Remark: Question 2 Part (d) is not the most general statement. In fact a simple modification of the proof suggested for this part proves that if $i \neq j \in I$, then

$$
\Theta_{i} \vee \bigwedge_{j \in I, j \neq i} \Theta_{j}=\iota
$$

Proof: In fact, clearly $\bar{c} \equiv \bar{b}\left(\Theta_{j}\right)$ for all $j \neq i$, which is all we need.

