

MATH 3322 Problem Set 8

March 21, 2019

Due: March 29, 2019

- [4] **Question 1.** Find the Galois group of $x^4 + 1$ over \mathbb{Q} and the Galois group of $x^8 - 1$ over \mathbb{Q} .

Source The next two exercises are from Dummit and Foote, §14.2.

Question 2. Let \mathbb{F} be a field of characteristic different from 2.

- [2] (a) If $K = \mathbb{F}(\sqrt{D_1}, \sqrt{D_2})$ where $D_1, D_2 \in \mathbb{F}$ are such that none of D_1, D_2 , or D_1D_2 is a square in \mathbb{F} , prove that K/\mathbb{F} is normal with $G(K/\mathbb{F})$ isomorphic to the Klein 4-group.
- [3] (b) Conversely, if K/\mathbb{F} is normal with $G(K/\mathbb{F})$ isomorphic to the Klein 4-group, then prove that $K = \mathbb{F}(\sqrt{D_1}, \sqrt{D_2})$ where $D_1, D_2 \in \mathbb{F}$ are such that none of D_1, D_2 , or D_1D_2 is a square in \mathbb{F} .

Question 3. Let $f(x) = x^4 - 2x^2 - 2 \in \mathbb{Q}[x]$.

Note that if $g(x) = x^2 - 2x - 2$ then $f(x) = g(x^2)$.

- (a) The following involves completely routine calculations and no marks are assigned. But it is always worthwhile to check the basic assumptions of the question!

Prove that $f(x)$ is irreducible over \mathbb{Q} , and verify that each of the following is a root of $f(x)$:

$$\alpha_1 = \sqrt{1 + \sqrt{3}} \quad \alpha_2 = \sqrt{1 - \sqrt{3}} \quad \alpha_3 = -\sqrt{1 + \sqrt{3}} \quad \alpha_4 = -\sqrt{1 - \sqrt{3}}$$

Let $F = \mathbb{Q}(\sqrt{3})$, $K_1 = \mathbb{Q}(\alpha_1)$, $K_2 = \mathbb{Q}(\alpha_2)$, and $E = \mathbb{Q}(\alpha_1, \alpha_2)$.

- [3] (b) Prove that $K_1 \neq K_2$ and that $K_1 \cap K_2 = F$.
- [4] (c) Prove that each of K_1, K_2 , and E is normal over F and that $G(E/F)$ is the Klein 4-group.
- [4] (d) Prove that $\text{Gal}(f(x) = 0 / \mathbb{Q})$ is isomorphic to the 8 element dihedral group D_4 .