MATH 3322 Problem Set 8

March 21, 2019
Due: March 29, 2019
[4] Question 1. Find the Galois group of $x^{4}+1$ over \mathbb{Q} and the Galois group of $x^{8}-1$ over \mathbb{Q}.

Source The next two exercises are from Dummit and Foote, §14.2.

Question 2. Let \mathbb{F} be a field of characteristic different from 2 .

Question 3. Let $f(x)=x^{4}-2 x^{2}-2 \in \mathbb{Q}[x]$.
Note that if $g(x)=x^{2}-2 x-2$ then $f(x)=g\left(x^{2}\right)$.
(a) The following involves completely routine calculations and no marks are assigned. But it is always worthwhile to check the basic assumptions of the question!

Prove that $f(x)$ is irreducible over \mathbb{Q}, and verify that each of the following is a root of $f(x)$:

$$
\alpha_{1}=\sqrt{1+\sqrt{3}} \quad \alpha_{2}=\sqrt{1-\sqrt{3}} \quad \alpha_{3}=-\sqrt{1+\sqrt{3}} \quad \alpha_{4}=-\sqrt{1-\sqrt{3}}
$$

Let $F=\mathbb{Q}(\sqrt{3}), K_{1}=\mathbb{Q}\left(\alpha_{1}\right), K_{2}=\mathbb{Q}\left(\alpha_{2}\right)$, and $E=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$.
(b) Prove that $K_{1} \neq K_{2}$ and that $K_{1} \cap K_{2}=F$.
(c) Prove that each of K_{1}, K_{2}, and E is normal over F and that $G(E / F)$ is the Klein 4-group.
(d) Prove that $\operatorname{Gal}(f(x)=0 / \mathbb{Q})$ is isomorphic to the 8 element dihedral group D_{4}.
[20] TOTAL

