MATH 3322 Problem Set 4

February 7, 2019

Due: February 15, 2019

Notation: Let D_{n} be the dihedral group of symmetries of the regular n-gon, generated by two elements r and s such that $r^{n}=1, s^{2}=1, r s=s r^{-1}$.

Note that many authors call this $D_{2 n}$, to reflect the order of the group. Ames (our text) or Beachy and Blair use the name D_{n} as we have defined it; Dummit and Foote, another important reference, uses $D_{2 n}$.
[3] Question 1. Let $p \in \mathbb{Z}$ be prime.
Prove that $\mathbb{Z} / p^{n} \mathbb{Z}$ has a unique composition series.
[4] Question 2. The sublattice diagrams for the quaternion group \mathbf{Q}_{8} and the dihedral group \mathbf{D}_{4} are attached.

Using only these diagrams and the fact that both groups have 8 elements, explain why \mathbf{Q}_{8} has exactly 3 distinct composition series and \mathbf{D}_{8} has exactly 7 distinct composition series.
[3] Question 3. Prove that if G has a composition series and $1 \neq H \unlhd G$, then G has a composition series containing H.
[4] Question 4. Prove that $D_{2^{n}}$ is solvable for each n.
Hint: Of course you only need to be able to find one subnormal series with abelian factors; the work you did on the previous question and the diagram for D_{4} should give you a hint towards a fairly easy answer.

Question 5. Prove that:
(a) Every subgroup of a solvable group is solvable.
(b) Every homomorphic image of a solvable group is solvable.
[20] TOTAL

From Abstract Algebra (Third Edition), David Dummit and Richard M. Foote,(Wiley 2004).

The first diagram shows what we call D_{4}.
(4) Using our usual notation for $D_{8}=\langle r, s\rangle$, the lattice of D_{8} is

(5) The lattice of subgroups of Q_{8} is

