MATH 3322 Problem Set 4

February 7, 2019 Due: February 15, 2019

Notation: Let D_n be the dihedral group of symmetries of the regular *n*-gon, generated by two elements *r* and *s* such that $r^n = 1$, $s^2 = 1$, $rs = sr^{-1}$.

Note that many authors call this D_{2n} , to reflect the order of the group. Ames (our text) or Beachy and Blair use the name D_n as we have defined it; Dummit and Foote, another important reference, uses D_{2n} .

- [3] **Question 1.** Let $p \in \mathbb{Z}$ be prime. Prove that $\mathbb{Z}/p^n\mathbb{Z}$ has a unique composition series.
- [4] **Question 2.** The sublattice diagrams for the quaternion group \mathbf{Q}_8 and the dihedral group \mathbf{D}_4 are attached.

Using only these diagrams and the fact that both groups have 8 elements, explain why \mathbf{Q}_8 has exactly 3 distinct composition series and \mathbf{D}_8 has exactly 7 distinct composition series.

[3] **Question 3.** Prove that if G has a composition series and $1 \neq H \trianglelefteq G$, then G has a composition series containing H.

[4] **Question 4.** Prove that D_{2^n} is solvable for each n.

Hint: Of course you only need to be able to find one subnormal series with abelian factors; the work you did on the previous question and the diagram for D_4 should give you a hint towards a fairly easy answer.

Question 5. Prove that:

- [3] (a) Every subgroup of a solvable group is solvable.
- [3] (b) Every homomorphic image of a solvable group is solvable.

[20] TOTAL

From Abstract Algebra (Third Edition), David Dummit and Richard M. Foote, (Wiley 2004).

The first diagram shows what we call D_4 .

(4) Using our usual notation for $D_8 = \langle r, s \rangle$, the lattice of D_8 is