

MATH 3322 Problem Set 1

January 14, 2019

Due: January 23, 2019

Note the extension by two days from the date published in the course outline.

Recall the following definitions and notation from the handout on Universal Algebra.

An *algebraic language* \mathcal{L} is determined by a set $(\mathbf{f}_i)_{i \in I}$ of *function symbols*, each \mathbf{f}_i a $\nu(i)$ -ary function symbol (where $\nu : I \rightarrow \omega \setminus \{0\}$); and a set $(\mathbf{c}_k)_{k \in k}$ of *constant symbols*.

An *abstract algebra* \mathcal{A} for \mathcal{L} consists of a non-empty set A and actual operations and elements on A interpreting the symbols of \mathcal{L} .

An *assignment of values* in \mathcal{A} is a map $\alpha : \text{variables} \rightarrow A$.

You will need to review and refer to the definitions of *subalgebra*, *homomorphism*, and *congruence*, and Definition 0.4, how to evaluate a term in an algebra.

Here is the example from class:

Lemma 0.1 *Let $\mathcal{B} \subseteq \mathcal{A}$ be \mathcal{L} -algebras, and \mathbf{t} an \mathcal{L} -term, α an assignment in \mathcal{A} . Then*

$$\mathbf{t}^{\mathcal{B}}[\alpha] = \mathbf{t}^{\mathcal{A}}[\alpha]$$

Proof: If \mathbf{t} is a variable v , then $\mathbf{t}^{\mathcal{B}}[\alpha] = \alpha(v) = \mathbf{t}^{\mathcal{A}}[\alpha]$.

If \mathbf{t} is a constant symbol c , then $\mathbf{t}^{\mathcal{B}}[\alpha] = c^{\mathcal{B}} = c^{\mathcal{A}} = \mathbf{t}^{\mathcal{A}}[\alpha]$; the first and last equalities by the definition of evaluation, and the middle by the definition of subalgebra.

If \mathbf{t} is a compound term $\mathbf{f}(\mathbf{t}_1, \dots, \mathbf{t}_n)$ and the Lemma holds for $\mathbf{t}_1, \dots, \mathbf{t}_n$, then

$$\mathbf{t}^{\mathcal{B}}[\alpha] = \mathbf{f}^{\mathcal{B}}(\mathbf{t}_1^{\mathcal{B}}[\alpha], \dots, \mathbf{t}_n^{\mathcal{B}}[\alpha]) = \mathbf{f}^{\mathcal{A}}(\mathbf{t}_1^{\mathcal{A}}[\alpha], \dots, \mathbf{t}_n^{\mathcal{A}}[\alpha]) = \mathbf{t}^{\mathcal{A}}[\alpha];$$

the first and last equalities by the definition of evaluations, and the middle one by the definition of subalgebra (for \mathbf{f}) and the assumption on the terms $\mathbf{t}_1, \dots, \mathbf{t}_n$. ■

[4]

Question 1. Let $\mathcal{B} \subseteq \mathcal{A}$ be \mathcal{L} -algebras.

(a) Prove that if an identity $\mathbf{s} = \mathbf{t}$ holds in \mathcal{A} , then the identity also holds in \mathcal{B} .

(b) Give a simple example in groups to show that the converse does not hold.

[3]

(a) Prove that

$$\varphi(\mathbf{t}^{\mathcal{A}}[\alpha]) = \mathbf{t}^{\mathcal{B}}(\varphi \circ \alpha).$$

[3]

(b) Prove that if φ is surjective, and if an identity $\mathbf{s} = \mathbf{t}$ holds in \mathcal{A} , then the identity also holds in \mathcal{B} .

[2]

(c) Find a simple example in groups to show that the converse to (b) does not hold.

... continued

[8]

Question 3. Let $(\mathcal{A}_i)_{i \in I}$ be a family of \mathcal{L} -algebras and $\mathcal{P} = \prod_{i \in I} \mathcal{A}_i$.

Define relations $(\Theta_i)_{i \in I}$ on \mathcal{P} by $\bar{a} \equiv \bar{b}(\Theta_i)$ iff $a_i = b_i$. It's obvious that each Θ_i is an equivalence relation, and you don't have to prove this.

- (a) Prove that each Θ_i is a congruence relation.
- (b) Prove that $\mathcal{P}/\Theta_i \cong \mathcal{A}_i$ by the map $\bar{a}/\Theta_i \mapsto a_i$.
- (c) Prove that $\bigwedge_{i \in I} \Theta_i$ is “equality”.

(That is, show that if $\bar{a} \equiv \bar{b}(\Theta_i)$ for all $i \in I$, then $\bar{a} = \bar{b}$.)

- (d) Prove that if $i \neq j \in I$, then $\Theta_i \vee \Theta_j = \iota$ (where ι is the “total” relation $\bar{a} \equiv \bar{b}(\iota)$ for all \bar{a}, \bar{b} .)

[Hint: Let \bar{c} agree with \bar{b} on all indices, except $c_i = a_i$, and then imitate the proof for a product of two groups given in class.]

[20]

TOTAL

Remark: Question 2 Part (d) is not the most general statement. In fact a simple modification of the proof suggested for this part proves that if $i \neq j \in I$, then

$$\Theta_i \vee \bigwedge_{j \in I, j \neq i} \Theta_j = \iota$$