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1.[45] Note: Each question in this section is worth 3 points, for a total of 45. Write a definition,
state a theorem or example, or do a short calculation. No other explanation is required.
Definitions and statements of theorems should be brief, clear, and accurate, and should
not include examples or extra explanations.

(a) Define, with the correct notation, “a divides b” .

Solution: a|b iff for some d , ad = b .

(b) Define, with the correct notation, the least common multiple of a and b .

Solution: The definition adopted in the lectures was:

[a, b] = m if m ≥ 0 , a|m , b|m , and if a|n and b|n then m|n .

Alternatively, for two marks only, we proved that this was equivalent to the text
book definition:

[a, b] = m if m is a positive common multiple of a and b , and if n is any positive
common multiple of a and b then m ≤ n .

(c) State The Division Algorithm .

Solution: Given integers a and b with a > 0 there are unique integers q and r ,
0 ≤ r < a , such that b = qa+ r .
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(d) State the Fundamental Theorem of Arithmetic.

Solution: Every integer n > 1 can be written (essentially) uniquely as a product
of primes.

Variations: “essentially uniquely” can be expressed in several ways, e.g. “uniquely
up to order”. You can also state this result in terms of the prime power factor-
ization.

(e) State a reduced residue system modulo 18 consisting of least positive residues modulo
18.

Solution: { 1, 5, 7, 11, 13, 17 } .

Note: for the question as stated, there is a unique solution. Any other (correct)
reduced residue system will score 2 marks.

(f) Define “prime number”.

Solution: An integer p > 1 is a prime number if it has exactly two positive
divisors, 1 and p .

Also acceptable: An integer p > 1 is a prime number if it has no non-trivial
divisors.

(g) Define Euler’s function φ .

Solution: For an integer n > 1 , φ(n) is the number of elements in a reduced
residue system modulo n .
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(h) State Euler’s Theorem.

Solution: If (a,m) = 1 then aφ(m) ≡ 1 (mod m) .

(i) Define primitive Pythagorean triple .

Solution: 〈x, y, z 〉 is a primitive Pythagorean triple if x, y, z > 0 are pairwise
relatively prime and x2 + y2 = z2 .

(j) Let m > 1 and (a,m) = 1 .

Define “the order of a modulo m”.

Solution: “the order of a modulo m” is the least positive integer t such that
at ≡ 1 (mod m) .

(k) Let m > 1 and (a,m) = 1 .

Define “a is a primitive root modulo m”.

Solution: “a is a primitive root modulo m” if the order of a modulo m is φ(m) .
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(l) Let m > 1 . Define “a is a quadratic residue modulo m”.

Solution: “a is a quadratic residue modulo m” if the congruence x2 ≡ a
(mod m) has a solution.

(m) State Gauss’s Quadratic reciprocity law.

Solution: If p and q are distinct odd primes, then(
p

q

)(
q

p

)
= (−1)(

p−1
2 )( q−1

2 ) .

(n) Let f and g be arithmetic functions. Define the convolution f ∗ g .

Solution:
(f ∗ g)(n) =

∑
d|n

f(d)g(
n

d
) .

Alternatively,

(f ∗ g)(n) =
∑

d1d2=n

f(d1)g(d2) .

(o) Let f be an arithmetic function. Define “f is multiplicative”.

Solution:

f is multiplicative if f is not the constant function 0 and for all m , n , if
(m,n) = 1 , then f(mn) = f(m)f(n) .

. . . end of Question 1
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2.[12] Find d = ( 19822, 13838 ) and two integers x and y such that 19822x+ 13838y = d , using
the algorithm as presented in the text and in class.

Part of the point of this question is to test your knowledge and understanding of the
algorithm. A “correct” solution by other methods will not receive full marks.

Solution:

Note: A statement of the algorithm is included in this solution for completeness, but
you did not have to write it out to receive full credit. The marks are for the table
and computations following.

We learned the following formulas: r−1 = a , r0 = b , qi+1 is determined by division:
ri−1 = riqi+1 + ri+1 , 0 ≤ ri+1 < ri , so we get rules as follows (with x−1 = 1 , y−1 = 0 ,
x0 = 0 , and y0 = 1): 

rk = rk−2 − qkrk−1
xk = xk−2 − qkxk−1
yk = yk−2 − qkyk−1

Therefore in this case:
qi+1 ri xi yi

19822 1 0
1 13838 0 1
2 5984 1 −1
3 1870 −2 3
5 374 7 −10

0

Therefore d = 374 = 7× 19822− 10× 13838 .

Or, rather than writing an equation, d = 374 , x = 7 , y = 10 .
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3.[8] Prove the following:

If ( a, m ) = 1 , then there is x such that ax ≡ 1 (mod m) , and any two such x are
congruent modulo m . If ( a, m ) > 1 , then there is no such x .

Solution:

If ( a, m ) = 1 , then there are x and y such that ax+my = 1 . Thus ax ≡ 1 (mod m) .

If as well ax′ ≡ 1 (mod m) then a(x− x′) ≡ 0 (mod m) , that is, m|a(x− x′) .

Since ( a, m ) = 1 , m|(x− x′) , that is, x ≡ x′ (mod m) ,.

And finally, if there is an x such that ax ≡ 1 (mod m) , then m|(ax− 1) ;

that is, for some y , my = ax− 1 , so 1 = ax−my and therefore ( a, m ) = 1 .

Alternatively (for the last step) if ( a, m ) = d > 1 then d is the least positive integer
for which we can find x and y such that ax+ by = d , and therefore in particular we
cannot solve ax+ by = 1 .

Remarks: There was quite a bit of misunderstanding and confusion about what was
needed for the proof of this fundamental theorem (Theorem 2.9 in Section 2.1). You
cannot use the results of Section 2.2 (which depend on this result!) to prove it.

4.[5] Prove the following:

Let p be a prime number. Then x2 ≡ 1 (mod p) if and only if x ≡ ±1 (mod p) .

Solution:

x2 ≡ 1 (mod p)

if and only if x2 − 1 ≡ (x− 1)(x+ 1) ≡ 0 (mod p)

if and only if p|(x− 1)(x+ 1)

if and only if (since p is a prime) p|x− 1 or p|x+ 1

if and only if x ≡ 1 (mod p) or x ≡ −1 (mod p) .

Remark: Note that (±1)2 = 1 always, and does not need proof!
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5. (a)[2] Complete the following by filling in the blanks:

The congruence ax ≡ b (mod m) has solutions iff ,

in which case there are solutions.

Solution: The congruence ax ≡ b (mod m) has solutions iff ( a, m ) |b ,

in which case there are ( a, m ) solutions.

(b)[10] Find the number of solutions to each of the following, and if there are solutions, find
all the solutions.

(a) 60x ≡ 140 (mod 180) (b) 35x ≡ 140 (mod 180)

Solution: Here, ( 60, 180 ) = 60 and 60 6 |140 , but ( 35, 180 ) = 5 and 5|140 .

So (a) has no solutions, but (b) has 5 solutions.

The solutions, when they exist, are obtained by dividing through by the gcd: so
for (b) we need to solve 7x ≡ 28 (mod 36) .

That is, x ≡ 4 (mod 36) .

Thus the solutions modulo 180 are 4, 40, 76, 112, and 148 .
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6.[10] Find all solutions to

{
x ≡ 5 (mod 7)
x ≡ 3 (mod 10)

}
.

Solution:

[Chinese Remainder Theorem]

[I always find it most efficient to start with the largest modulus, but that is not a
rule.]

∴ x = 10k + 3 for some k

10k + 3 ≡ 5 (mod 7)

3k ≡ 2 ≡ 9 (mod 7)

k ≡ 3 (mod 7)

∴ k = 7t+ 3 for some t

x = 10(7t+ 3) + 3

= 70t+ 33

∴ x ≡ 33 (mod 70)

And the other way. . .

∴ x = 7k + 5 for some k

7k + 5 ≡ 3 (mod 10)

7k ≡ −2 ≡ 28 (mod 10)

k ≡ 4 (mod 10)

∴ k = 10t+ 4 for some t

x = 7(10t+ 4) + 5

= 70t+ 33

∴ x ≡ 33 (mod 70)
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7.[15] Consider the system of linear diophantine equations{
3x +3y +2z = 15
2x +2y +4z = 18

Using the matrix method as taught in class and in the text, find all positive solutions.

Part of the point of this question is to test your knowledge and understanding of the
algorithm. A “correct” solution by other methods will not receive full marks.

Solution: Reduce an augmented matrix by column operations and row operations.
At each stage, choose your “pivot” point as the coefficient entry with the least positive
absolute value, and furthest to the left.

“There are usually several valid pathways to a solution, but this problem is so straight-
forward that most of you should find the same solution.” Ha! Fooled myself! There
were 14 out of 18 mostly correct solutions, and I think there were 14 different ways of
presenting the answer, including finding either x or y corresponding to the parameter!

You can always verify that a solution is correct by substituing the values obtained
into the original equations, and computing.

3 3 2 15 C2 − C1, C3 − 2C1

2 2 4 18
1 0 0 x
0 1 0 y
0 0 1 z

3 0 −4 15 R1 −R2

2 0 0 18
1 −1 −2
0 1 0
0 0 1

1 0 −4 −3 R2 − 2R1

2 0 0 18
1 −1 −2
0 1 0
0 0 1

1 0 −4 −3 C3 + 4C1

0 0 8 24
1 −1 −2
0 1 0
0 0 1
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Since 8|24 , there are solutions.

1 0 0 −3 C2 ↔ C1

0 0 8 24 (1/8)R2

1 −1 2
0 1 0
0 0 1

1 0 0 −3
0 1 0 3
1 2 −1 x
0 0 1 y
0 1 0 z
u v w

So we take w as a parameter and get u = −3 , v = 3 , x = u+ 2v−w = 3−w , y = w ,
z = v = 3 .

For positive solutions, y = w > 0 and x = 3− w > 0 , so 0 < w < 3 .

The positive solutions are

〈x, y, z 〉 = 〈 2, 1, 3 〉 , 〈 1, 2, 3 〉 .
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8.[6] Prove that every integer n ≥ 3 appears as one or the other of the first two numbers in a
Pythagorean triple.

Solution: A typical Pythagorean triple has the form 〈x, y, z 〉 where for some r > s ,

x = r2 − s2 , y = 2rs z = r2 + s2 .

Note that (k + 1)2 − k2 = 2k + 1 .

So if n = 2k + 1 ≥ 3 is odd, take r = k + 1 and s = k to get x = n .

On the other hand, if n = 2k ≥ 3 is even, then k ≥ 2 and so we can take r = k and
s = 1 to get y = n .

Remark So the two resulting triples are 〈 2k + 1, 2k(k + 1), 2k2 + 2k + 1 〉 and
〈 k2 − 1, 2k, k2 + 1 〉 .

Remark: This really did depend on knowing the general form of a Pythagorean
triple for an efficient solution. Some of you found much longer and more involved
solutions.

9.[6] Suppose that g is a primitive root modulo p , p an odd prime.

Show that g is not a quadratic residue modulo p .

Solution: Suppose that g ≡ a2 (mod p) , where a 6≡ 0 (mod p) .

Since g is a primitive root, for some t , a ≡ gt (mod p) and so g ≡ g2t (mod p) .

But then 2t ≡ 1 (mod p− 1) .

However, (2, p− 1) = 2 and 2 6 |1 , so 2t ≡ 1 (mod p− 1) does not have any solutions.

Solution: There is a less elementary solution, using Euler’s criterion, Theorem 2.38:
the congruence x2 ≡ g (mod p) has a solution if and only if g

p−1
2 ≡ 1 (mod p) .

But if g is a primitive root, then g has order p−1 , and so since p−1
2
< p−1 , g

p−1
2 6≡ 1

(mod p) .
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10. Given: 3 is a primitive root modulo 31 .

(a)[3] Find the least positive residue of 315 modulo 31.

There is a short and easy answer worth 3 points using theory; and a long and tedious
solution by calculation worth only one point.

Solution: (315)2 = 330 ≡ 1 (mod 31) by Fermat’s Theorem, and 315 6≡ 1
(mod 31) since 3 is a primitive root, so 315 ≡ −1 (mod 13) .

(b)[7] 1. Which powers of 3 are square roots of 315 modulo 31?

2. Which powers of 3 are fifth roots of 315 modulo 31?

Explain your answers.

Solution: Since 15 is odd, 315 has no square roots modulo 31.

Since (5, 30) = 5 and 5|15 , 5t ≡ 15 (mod 30) has a solution (modulo 6 = 30/5)
and there are 5 of them modulo 30 , namely 3, 9, 15, 21, 27 . So the fifth roots
of 315 modulo 31 are 33 , 39 , 315 , 321 , and 327 .
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11.[10] Calculate the value of the Legendre symbol

(
−33

67

)
.

Solution:(
−33

67

)
=

(
−1

67

)(
3

67

)(
11

67

)
= (−1)

(
67

3

)
(−1)(

67−1
2 )( 3−1

2 )
(

67

11

)
(−1)(

67−1
2 )( 11−1

2 )

= (−1)

(
1

3

)
(−1)

(
1

11

)
= −1

Solution: (
−33

67

)
=

(
34

67

)
=

(
2

67

)(
17

67

)
= (−1)

672−1
8

(
67

17

)
(−1)(

67−1
2 )( 17−1

2 )

= (−1)

(
16

17

)
(1)

= −1

Explanation of the calculation of (−1)
672−1

8 .

We showed in general that if m is odd then 8|(m2 − 1) .

Furthermore, in regards to this particular calculation, all that we care about is
whether the fraction is odd or even. If we write m = 8q + r , 0 < r < 8 , we know
that r is odd and that m2 − 1 = 16(4q2 + qr) + (r2 − 1) , so whether (m2 − 1)/8 is
odd or even only depends on whether (r2 − 1)/8 is odd or even.

In this case, 67 = 8× 8 + 3 , and (32 − 1)/8 = 1 is odd.
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12. Suppose that F (n) =
∑

d|n f(d) for all positive integers n .

(a)[3] Define the Möbius function µ .

Solution:

µ(n) =

{
(−1)ω(n) if n is square-free
0 otherwise

where ω(n) is the number of distinct prime divisors of n .

(b)[3] State the Möbius inversion formula.

Solution: If F (n) =
∑
d|n

f(d) then f(n) =
∑
d|n

µ(d)F (n/d) .

Alternatively:

If F (n) =
∑
d|n

f(d) then f(n) =
∑

d1d2=n

µ(d1)F (d2) .

Alternatively: If F = f ∗ 1 , then f = µ ∗ F .

(c)[5] Suppose that f is multiplicative and for all primes p and k > 0 , F (pk) = pk−1 .

Find f(72) .

Solution: f(72) = f(8)f(9) since f is multiplicative.

Note that for k ≥ 2 , µ(pk) = 0 since trivially pk is not square free. So:

f(8) = f(23) = µ(1)F (8) + µ(2)F (4) = F (8)− F (4) = 4− 2 = 2

and

f(9) = f(32) = µ(1)F (9) + µ(3)F (3) = F (9)− F (3) = 3− 1 = 2 ,

by part (b) and the definition of F .

So f(72) = 2 · 2 = 4 .


