MATH 2170-19W Problem Set 8

April 4, 2019
Solutions
$g=2$ is a primitive root modulo 19.
Use the following table to assist you in the solution of the first two questions and 4(a). The most efficient solutions involve the use of the table and the application of theory; numerically correct solutions involving long computations will not receive full credit.

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
g^{t}	2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1

Question 1.

For all parts, note that $\phi(19)=18$.
(c) Find all the solutions to $x^{15} \equiv 12(\bmod 19)$.

Solution: \quad From (a) we are looking for the solutions to $x^{15}=\left(2^{t}\right)^{15} \equiv 2^{15} \quad(\bmod 19)$, and therefore solutions to $15 t \equiv 15(\bmod 18) .(15,18)=3$, so this is equivalent to $5 t \equiv 5$ $(\bmod 6)$, and $(5,6)=1$ so we can cancel and get $t \equiv 1(\bmod 6)$. Thus the three solutions for t are $t \equiv 1,7,13 \quad(\bmod 18)$, and so the solutions to the original congruence are $x \equiv$ $2,14,3$.
[2] Question 2. Evaluate $\left(\frac{7}{19}\right)$ and $\left(\frac{8}{19}\right)$ using the results of the table. No marks will be given for any other method.
Solution: $\quad 7 \equiv 2^{6}(\bmod 19)$, an even exponent, so 7 is a square $(\bmod 19)$, that is, $\left(\frac{7}{19}\right)=1$.
$8 \equiv 2^{3} \quad(\bmod 19)$, an odd exponent, so 8 is not a square $\quad(\bmod 19)$, that is, $\left(\frac{8}{19}\right)=-1$.
Comments: You must demonstrate through your solutions of these two questions your understanding of the use of primitive roots and their powers in solving problems like these.
[4] Question 3. Evaluate the Legendre symbol $\left(\frac{79}{103}\right)$, using the theory of quadratic reciprocity.
Remark: There are several correct pathways to a solution.
Solution:

$$
\begin{aligned}
\left(\frac{79}{103}\right)=\left(\frac{103}{79}\right)(-1)^{\frac{102}{2} \frac{78}{2}}=-\left(\frac{24}{79}\right) & =-\left(\frac{4}{79}\right)\left(\frac{2}{79}\right)\left(\frac{3}{79}\right)= \\
& =-(1)(-1)^{\frac{79^{2}-1}{8}}\left(\frac{79}{3}\right)(-1)^{\frac{78}{2} \frac{2}{2}}=-(1)(1)(-1)\left(\frac{1}{3}\right)=1
\end{aligned}
$$

We know that $\frac{79^{2}-1}{8}$ is even since $79 \equiv 7(\bmod 8)$.
[Here we are making use of the following: $\frac{1^{2}-1}{8}=0, \frac{3^{2}-1}{8}=1, \frac{5^{2}-1}{8}=3$, and $\frac{7^{2}-1}{8}=6$.]
Question 4. Let g be a primitive root modulo p, p a prime.
If $(a, p)=1$, define $\log _{g}(a)$ to be the unique $t, 1 \leq t<p$, such that $g^{t} \equiv a(\bmod p)$. Suppose that $(a, p)=1=(b, p)$.
[2] (a) For $p=19$, evaluate $\log _{2}(13)$.
Solution: From the table, $\log _{2}(13)=5$.
[2] (b) Prove that for any $n>0, \log _{g}\left(a^{n}\right) \equiv n \log _{g}(a) \quad(\bmod \phi(p))$;
Proof: Let $t=\log _{g}(a)$, so $g^{t} \equiv a \quad(\bmod p)$.
Then $g^{t n} \equiv a^{n} \quad(\bmod p)$, and so $t n \equiv \log _{g}\left(a^{n}\right) \quad(\bmod \phi(p))$,
that is, $n \log _{g}(a) \equiv \log _{g}\left(a^{n}\right) \quad(\bmod \phi(p))$.
[3]
Question 5. Suppose that p is a prime and $(a, p)=1=(b, p)$.
[Recall the formula for $\left(\frac{a b}{p}\right)$.]
Show that $a b$ is a quadratic residue modulo p if both a and b are quadratic residues modulo p or if neither a nor b is a quadratic residue modulo p, and that $a b$ is a quadratic non-residue modulo p if exactly one of a or b is a quadratic non-residue modulo p.

Proof: $\quad\left(\frac{a}{p}\right)= \pm 1$ since $(a, p)=1$, and similarly for b.

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) .
$$

There are two cases: $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$ and $\left(\frac{a}{p}\right)=-\left(\frac{b}{p}\right)$.
In the first case, the product is 1 and $a b$ is a quadratic residue $(\bmod p)$, and in the second case, the product is -1 and $a b$ is a quadratic non-residue $(\bmod p)$,
[20] TOTAL

