MATH 2170-19W Problem Set 7

March 29, 2019
Solutions
[8] Question 1. Recall that \mathbb{Z}_{7} denotes the set $\{0,1,2,3,4,5,6\}$ together with the operations of addition and multiplication modulo 7 . Recall that every non-zero element of \mathbb{Z}_{7} has a multiplicative inverse modulo 7 :

$$
1 \cdot 1 \equiv 1 \quad(\bmod 7), \quad 2 \cdot 4 \equiv 1 \quad(\bmod 7), \quad 3 \cdot 5 \equiv 1 \quad(\bmod 7,) \quad 6 \cdot 6 \equiv 1 \quad(\bmod 7)
$$

Consider the following system of congruences:

$$
\left\{\begin{aligned}
3 w+5 x+5 y+2 z & \equiv 1 \quad(\bmod 7) \\
2 w+x+3 y+5 z & \equiv 4 \quad(\bmod 7)
\end{aligned}\right.
$$

Using only the method of Gaussian elimination with back substitution, or the method of GaussJordan elimination, from first year Linear Algebra, [row reduction in matrix form, no column operations] and only arithmetic in \mathbb{Z}_{7}, find all solutions to this system. Give your solution in vector form.

NOTE: It really was essential to work out this problem "modulo 7". Real number or rational arithmetic is wrong.
Solution: There are different pathways to the solution, but the row-reduced echelon form of the matrix is unique. Because of the precise statement of the question, column operations are not permitted.

The augmented matrix of the system is

$$
\begin{aligned}
& \left|\begin{array}{llll|l}
3 & 5 & 5 & 2 & 1 \\
2 & 1 & 3 & 5 & 4
\end{array}\right| \quad 5 R_{1} \\
& \left|\begin{array}{llll|l}
1 & 4 & 4 & 3 & 5 \\
2 & 1 & 3 & 5 & 4
\end{array}\right| \quad R_{2}-2 R_{1} \\
& \left|\begin{array}{llll|l}
1 & 4 & 4 & 3 & 5 \\
0 & 0 & 2 & 6 & 1
\end{array}\right| \quad 4 R_{2} \\
& \left|\begin{array}{llll|l}
1 & 4 & 4 & 3 & 5 \\
0 & 0 & 1 & 3 & 4
\end{array}\right| \quad R_{1}-4 R_{2} \\
& \left|\begin{array}{llll|l}
1 & 4 & 0 & 5 & 3 \\
0 & 0 & 1 & 3 & 4
\end{array}\right|
\end{aligned}
$$

So we take x as a parameter a and z as a parameter b and find

$$
w=3+2 a+2 b \quad y=4+4 b
$$

This is enough for the answer to this problem, but it is nicer to write the solution in vectorparametric form:

$$
\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
4 \\
0
\end{array}\right]+a\left[\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{l}
2 \\
0 \\
4 \\
1
\end{array}\right]
$$

Remarks: [On elementary linear algebra] We can interpret our work over \mathbb{Z}_{7} in exactly the same way we do when we work over \mathbb{Q} or \mathbb{R}. There are two vector spaces here, over the field \mathbb{Z}_{7} : the four dimensional space $\left(\mathbb{Z}_{7}\right)^{4}$ and the two dimensional space $\left(\mathbb{Z}_{7}\right)^{2}$. The coefficient matrix is

$$
A=\left[\begin{array}{llll}
3 & 5 & 5 & 2 \\
2 & 1 & 3 & 5
\end{array}\right]
$$

The row space of A and the null space of A are (complementary) subspaces of $\left(\mathbb{Z}_{7}\right)^{4}$. A nice basis for the row space consists of the non-zero rows of the row-reduced echelon form of A :

$$
\left\{\left[\begin{array}{llll}
1 & 4 & 0 & 5
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 1 & 3
\end{array}\right]\right\}
$$

and a basis for the null space of A is given by the vector coefficients of the parameters:

$$
\left\{\left[\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
4 \\
1
\end{array}\right]\right\}
$$

The column space of A and the left null space of A are subspaces of $\left(\mathbb{Z}_{7}\right)^{2}$. Since "row rank equals column rank", the column space has dimension 2 and so the complementary subspace the left null space of A, has dimension 0 . The standard basis for the column space is obtained by taking the columns of A that correspond to the "pivot" columns of the row-reduced echelon form of A :

$$
\left\{\left[\begin{array}{l}
3 \\
2
\end{array}\right],\left[\begin{array}{l}
5 \\
3
\end{array}\right]\right\}
$$

Question 2.

[2] (a) Find all Pythagorean triples where one of x, y, and z is equal to 17
Solution: Since 17 is a prime, in fact the triples must be primitive.
Thus either $x=r^{2}-s^{2}=17$ or $z=r^{2}+s^{2}=17$. There are then only two solutions: $r=9, s=8$ giving the triple $17,144,145$, and $r=4, s=1$ giving the triple $15,8,17$.
[2] (b) Find all primitive Pythagorean triples where $y=30$, if any.
Solution: \quad So $2 r s=30$ and $r s=15$, where $r>s>0$ and r and s are relatively prime and incongruent modulo 2 . But $r s=15$ implies r and s are both odd, so there are no such primitive Pythagorean triples! Remark: There are two triples with $y=30: 224,30,226$ and $16,30,34$; but they are not primitive.
[4] Question 3. Prove that if $\langle x, y, z\rangle$ is a Pythagorean triple, then one of x, y, z is divisible by 3 , and one of x, y, z is divisible by 5 .
Proof: Suppose $x^{2}+y^{2}=z^{2}$, an equation in non-negative integers. Then if $3 \not \backslash x$ and $3 \not \backslash y$, then $x^{2} \equiv y^{2} \equiv 1 \quad(\bmod 3)$ and so $z^{2} \equiv 2(\bmod 3)$. But 2 is not a square $(\bmod 3)$, so in fact one of x or y is divisible by 3 .

If neither x nor y is divisible by 5 , then $x^{2} \equiv \pm 1(\bmod 5)$ and $y^{2} \equiv \pm 1(\bmod 5)$ and so z^{2} is congruent to one of $0, \pm 2(\bmod 5)$. But 2 is not a square modulo 5 , so $z \equiv 0(\bmod 5)$.

Proof: A Pythagorean triple in general has the form

$$
x=r^{2}-s^{2} \quad y=2 r s \quad z=r^{2}+s^{2} \quad(r>s)
$$

If neither r nor s is divisible by 3 , that is, they are not congruent to $0 \bmod 3$, so that y is not divisible by 3 , then they are congruent to 1 or $-1 \bmod 3$. Thus either $r \equiv s(\bmod 3)$ or $r \equiv-s \quad(\bmod 3) ;$ in either case $x=r^{2}-y^{2} \equiv 0 \quad(\bmod 3)$.

If neither r nor s is divisible by 5 , that is, they are not congruent to $0 \bmod 5$, so that y is not divisible by 5 , then r^{2} and s^{2} are each congruent to either $1 \operatorname{or}-1 \bmod 5$. If they are congruent to each other, then $x=r^{2}-s^{2} \equiv 0(\bmod 5)$, and if they are congruent to opposites, then $z=r^{2}+s^{2} \equiv 0 \quad(\bmod 5)$.
[4] Question 4. $g=2$ is a primitive root modulo 19.

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
g^{t}	2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1

Use this information to calculate the least residue modulo 19 of
(a) $4 \cdot 5 \cdot 7 \cdot 11 \cdot 15 \cdot 17$
(b) 12^{100}
(a) Solution:

$$
4 \cdot 5 \cdot 7 \cdot 11 \cdot 15 \cdot 17 \equiv 2^{2} 2^{16} 2^{6} 2^{12} 2^{11} 2^{10} \equiv 2^{2+16+6+12+11+10} \quad(\bmod 19),
$$

and $2+16+6+12+11+10=57 \equiv 3(\bmod 18)$, so

$$
4 \cdot 5 \cdot 7 \cdot 11 \cdot 15 \cdot 17 \equiv 2^{3} \equiv 8 \quad(\bmod 19)
$$

(b) Solution: $\quad 12^{100} \equiv\left(2^{15}\right)^{100}=2^{1500} \quad(\bmod 19)$, and $1500 \equiv 6(\bmod 18)$, so $12^{100} \equiv 2^{6} \equiv 7 \quad(\bmod 19)$.

