MATH 2170-19W Problem Set 6 March 15, 2019 Solutions

Remarks: Reduce an augmented matrix by column operations [and row operations]. At each stage, choose your "pivot" point as the coefficient entry with the least positive absolute value.

There may be more than one valid pathway to a solution, and I present only one.

You can always verify that a solution is correct by substituing the values obtained into the original equations, and computing.

I show the complete set-up initially, but then only display the parts of the augmented matrix that are being changed. At the end, I recover the unchanged parts in order to find the full solution.

Solutions in vector form are preferred but not mandatory. The same applies to "reduction of constants".

[4] **Question 1.** Find all positive integer solutions to

$$5x + 16y = 121$$

Solution:

(5))	16	121	$C_2 - 3C_1$	1
	1	0	x		
()	1	y		
;	*	*			
	5	(1)	$C_2 - 3C_1$	
-	1	-:	3		
	0]	L		
-			·		
		0	-	101	
	_	0	1	121	
		16	-3	x	
		-5	1	y	

So we have new variables u and v, where v = 121 and we can take u as a parameter.

v

u

So $\begin{array}{ccc} 16u - 3(121) &=& x\\ -5u + 121 &=& y \end{array}$ or $\left[\begin{array}{c} x\\ y \end{array} \right] = \left[\begin{array}{c} -363\\ 121 \end{array} \right] + u \left[\begin{array}{c} 16\\ -5 \end{array} \right].$

If we want to reduce the constants, note that $363/16 \approx 22$, and substitute u = k + 22 to get

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -11 \\ 11 \end{bmatrix} + k \begin{bmatrix} 16 \\ -5 \end{bmatrix}.$$

It is certainly easier to find the positive solutions from the reduced form, but any method is acceptable. We want x > 0 and y > 0, so -11 + 16k > 0 or k > 11/16; and 11 - 5k > 0 or 11/5 > k. So k = 1 or k = 2; and the two positive solutions are $\langle x, y \rangle = \langle 5, 6 \rangle$ and $\langle x, y \rangle = \langle 21, 1 \rangle$.

$$3x + 7y + 11z = 157$$

Solution:

3	7	11	157	
1	0	0	x	$C_2 - 2C_1$
0	1	0	y	$C_3 - 3C_1$
0	0	1		:
*	*	*		
3	(1)	2	
1	-2	2 –	-3	$C_1 - 3C_2$
0	-	1	0	$C_{3} - 2C_{1}$
0	()	1	

0	1	0	157
7	-2	1	x
-3	1	-2	y
0	0	1	z
u	v	w	

So we have new variables u, v, and w, with v = 157 and u and w as parameters.

So
$$\left\{\begin{array}{ccc} 7u - 2(157) + w &= x\\ -3u + 157 - 2w &= y\\ w &= z \end{array}\right\}, \quad \text{or} \quad \left[\begin{array}{c} x\\ y\\ z \end{array}\right] = \left[\begin{array}{c} -314\\ 157\\ 0 \end{array}\right] + u \left[\begin{array}{c} 7\\ -3\\ 0 \end{array}\right] + z \left[\begin{array}{c} 1\\ -2\\ 1 \end{array}\right].$$

If we want to reduce the constants, note that $314/7 \approx 44$, and substitute u = k + 44 to get

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -6 \\ 25 \\ 0 \end{bmatrix} + k \begin{bmatrix} 7 \\ -3 \\ 0 \end{bmatrix} + z \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Question 3. Consider the system of linear diophantine equations

$$\begin{cases} 10x + 6y + 3z = 232 \\ 9x + 7y + 6z = 278 \end{cases}$$

- [8] (a) Find all the integer solutions.
- [2] (b) Find all the solutions in positive integers. Solution:

10)	6	(3)	2	32	$C_1 - 3C_3$
9)	7	6	2	78	$C_2 - 2C_3$
1		0	0		x	
0)	1	0		y	
0)	0	1		z	
*	:	*	*			
	(1)	0	3		$C_3 - 3C_1$
	-	9	-5	6		
		1	0	0		
		0	1	0		
_	_	3	-2	1		

(1)	0	0	232	
-9	-5	33	278	$R_2 + 9R_1$
1	0	-3		
0	1	0		
-3	-2	10		

1	0	0	232
0	-5	33	2366
1	0	-3	
0	1	0	
-3	-2	10	

-5)	33	$C_2 + 6C_1$	-5	3	$C_1 + 2C_2$	(1)	3	$C_2 - 3C_1$
0	-3		0	-3		-6	-3	
1	0		1	6		13	6	
-2	10		-2	-2		-6	-2	

$ \begin{array}{c cc} -6 & 15 \\ 13 & -33 \end{array} $	1	0	
13 -33	-6	15	
	13	-33	
-6 16	-6	16	

Now we reassemble the full matrix.

1	0	0	232
0	1	0	2366
1	-6	15	x
0	13	-33	y
-3	-6	16	z
u	v	w	

So we have three new variables $u=232\,,\,v=2366\,,$ and $w\,,$ which we take as a parameter, and get

x	=	u - 6v + 15w
y	=	13v - 33w
z	=	-3u - 6v + 16w

or

$$x = -13964 + 15w$$

$$y = 30758 - 33w$$

$$z = -14892 + 16w$$

So all solutions are given by set of equations. Notice that $30758/33 \approx 932$, so substitute w = k + 932 to get

$$\begin{array}{rcl} x & = & 16 + 15k \\ y & = & 2 - 33k \\ z & = & = 20 + 16k \end{array}$$

For positive solutions, from the equation for y, $k \leq 0$; and from the other two equations $-1 \leq k$, so the two positive solutions are (x, y, z) = (16, 2, 20) and (x, y, z) = (1, 35, 4).

In vector form, the general solution that we found is

$$\begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 16\\ 2\\ 20 \end{bmatrix} + k \begin{bmatrix} 15\\ -33\\ 16 \end{bmatrix}$$