MATH 2170-19W Problem Set 6

March 15, 2019
Solutions

Remarks: Reduce an augmented matrix by column operations [and row operations]. At each stage, choose your "pivot" point as the coefficient entry with the least positive absolute value.

There may be more than one valid pathway to a solution, and I present only one.
You can always verify that a solution is correct by substituing the values obtained into the original equations, and computing.

I show the complete set-up initially, but then only display the parts of the augmented matrix that are being changed. At the end, I recover the unchanged parts in order to find the full solution.

Solutions in vector form are preferred but not mandatory. The same applies to "reduction of constants".
[4] Question 1. Find all positive integer solutions to

$$
5 x+16 y=121
$$

Solution:

(5)	16	121	$C_{2}-3 C_{1}$
1	0	x	
0	1	y	
$*$	$*$		
5	1		$C_{2}-3 C_{1}$
1	-3		
0	1		

0	1	121
16	-3	x
-5	1	y
u	v	

So we have new variables u and v, where $v=121$ and we can take u as a parameter.

$$
\text { So } \begin{aligned}
16 u-3(121) & =x \\
-5 u+121 & =y
\end{aligned} \quad \text { or } \quad\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
-363 \\
121
\end{array}\right]+u\left[\begin{array}{r}
16 \\
-5
\end{array}\right] .
$$

If we want to reduce the constants, note that $363 / 16 \approx 22$, and substitute $u=k+22$ to get

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
-11 \\
11
\end{array}\right]+k\left[\begin{array}{c}
16 \\
-5
\end{array}\right] .
$$

It is certainly easier to find the positive solutions from the reduced form, but any method is acceptable. We want $x>0$ and $y>0$, so $-11+16 k>0$ or $k>11 / 16$; and $11-5 k>0$ or $11 / 5>k$. So $k=1$ or $k=2$; and the two positive solutions are $\langle x, y\rangle=\langle 5,6\rangle$ and $\langle x, y\rangle=\langle 21,1\rangle$.
[6] Question 2. Find all integer solutions to

$$
3 x+7 y+11 z=157
$$

Solution:

(3)	7	11	157	
1	0	0	x	$C_{2}-2 C_{1}$
0	1	0	y	$C_{3}-3 C_{1}$
0	0	1	z	
$*$	$*$	$*$		

3	1	2	
1	-2	-3	$C_{1}-3 C_{2}$
0	1	0	$C_{3}-2 C_{1}$
0	0	1	

0	1	0	157
7	-2	1	x
-3	1	-2	y
0	0	1	z
u	v	w	

So we have new variables u, v, and w, with $v=157$ and u and w as parameters.

$$
\text { So }\left\{\begin{aligned}
7 u-2(157)+w & =x \\
-3 u+157-2 w & =y \\
w & =z
\end{aligned}\right\}, \quad \text { or } \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
-314 \\
157 \\
0
\end{array}\right]+u\left[\begin{array}{r}
7 \\
-3 \\
0
\end{array}\right]+z\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right] .
$$

If we want to reduce the constants, note that $314 / 7 \approx 44$, and substitute $u=k+44$ to get

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
-6 \\
25 \\
0
\end{array}\right]+k\left[\begin{array}{r}
7 \\
-3 \\
0
\end{array}\right]+z\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]
$$

Question 3. Consider the system of linear diophantine equations

$$
\left\{\begin{aligned}
10 x+6 y+3 z & =232 \\
9 x+7 y+6 z & =278
\end{aligned}\right.
$$

[8] (a) Find all the integer solutions.
[2] (b) Find all the solutions in positive integers.
Solution:

10	6	3	232	$C_{1}-3 C_{3}$
9	7	6	278	$C_{2}-2 C_{3}$
1	0	0	x	
0	1	0	y	
0	0	1	z	
$*$	$*$	$*$		

(1)	0	3	$C_{3}-3 C_{1}$
-9	-5	6	
1	0	0	
0	1	0	
-3	-2	1	

(1)	0	0	232	
-9	-5	33	278	$R_{2}+9 R_{1}$
1	0	-3		
0	1	0		
-3	-2	10		

1	0	0	232
	-5	33	2366
1	0	-3	
0	1	0	
-3	-2	10	

(-5)	33	$C_{2}+6 C_{1}$	-5	(3)	$C_{1}+2 C_{2}$	(1)	3	$C_{2}-3 C_{1}$
0	-3			-3		-6	-3	
1	0			6		13	6	
	10			-2		-6	-2	

1	0	
-6	15	
13	-33	
-6	16	

Now we reassemble the full matrix.

1	0	0	232
0	1	0	2366
1	-6	15	x
0	13	-33	y
-3	-6	16	z
u	v	w	

So we have three new variables $u=232, v=2366$, and w, which we take as a parameter, and get

$$
\begin{array}{rlr}
x & = & u-6 v+15 w \\
y & = & 13 v-33 w \\
z & = & -3 u-6 v+16 w
\end{array}
$$

or

$$
\begin{aligned}
& x=-13964+15 w \\
& y=30758-33 w \\
& z==-14892+16 w
\end{aligned}
$$

So all solutions are given by set of equations. Notice that $30758 / 33 \approx 932$, so substitute $w=k+932$ to get

$$
\begin{aligned}
& x=16+15 k \\
& y=2-33 k \\
& z==20+16 k
\end{aligned}
$$

For positive solutions, from the equation for $y, k \leq 0$; and from the other two equations $-1 \leq k$, so the two positive solutions are $(x, y, z)=(16,2,20)$ and $(x, y, z)=(1,35,4)$.

In vector form, the general solution that we found is

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
16 \\
2 \\
20
\end{array}\right]+k\left[\begin{array}{r}
15 \\
-33 \\
16
\end{array}\right]
$$

