MATH 2170-19W Problem Set 6

March 15, 2019
Solutions

Remarks: Reduce an augmented matrix by column operations [and row operations]. At each
stage, choose your “pivot” point as the coeflicient entry with the least positive absolute value.

There may be more than one valid pathway to a solution, and I present only one.

You can always verify that a solution is correct by substituing the values obtained into the
original equations, and computing.

I show the complete set-up initially, but then only display the parts of the augmented
matrix that are being changed. At the end, I recover the unchanged parts in order to find the
full solution.

Solutions in vector form are preferred but not mandatory. The same applies to “reduction
of constants”.

4] Question 1. Find all positive integer solutions to
Sz + 16y = 121
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So we have new variables v and v, where v = 121 and we can take u as a parameter.

If we want to reduce the constants, note that 363/16 ~ 22, and substitute u = k4 22 to get
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It is certainly easier to find the positive solutions from the reduced form, but any method

is acceptable. We want > 0 and y > 0, so —11 4 16k > 0 or k > 11/16; and 11 — 5k > 0
or 11/5 > k. So k =1 or k = 2; and the two positive solutions are (x, y) = (5, 6) and

(z,y)=1(21,1).
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Question 2.

Solution:

Find all integer solutions to

3z 4+ Ty + 11z = 157
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So we have new variables u, v, and w, with v = 157 and u and w as parameters.

So

If we want to reduce the constants, note that 314/7 ~ 44, and substitute u = k + 44 to get
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Question 3. Consider the system of linear diophantine equations

10z +6y +3z = 232
9z +7y +6z = 278

(a) Find all the integer solutions.

(b) Find all the solutions in positive integers.
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So we have three new variables u = 232, v = 2366, and w, which we take as a parameter,
and get

T = u — 6v + 15w
= 13v — 33w
= —3u—6v+ 16w

or

r = —13964 + 15w
= 30758 — 33w

z = = —14892 + 16w

So all solutions are given by set of equations. Notice that 30758/33 =~ 932, so substitute
w =k + 932 to get

x = 16+ 15k
= 2-33k
= =20+ 16k

For positive solutions, from the equation for y, kK < 0; and from the other two equations
—1 <k, so the two positive solutions are (z,vy, z) = (16,2,20) and (z,y, z) = (1,35,4).

In vector form, the general solution that we found is
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