MATH 2170-19W Problem Set 5

March 8, 2019
Solutions
[2] Question 1. Find all solutions to

$$
\left\{\begin{array}{rcrl}
x & \equiv & 1 & (\bmod 3) \\
x & \equiv & 7 & (\bmod 12) \\
x & \equiv & 43 & (\bmod 60)
\end{array}\right.
$$

Hint: This question is worth only 2 marks.
One mark is for the correct answer, the other mark is for the insight that this problem does not require any work.
Solution: \quad Notice first that $3 \mid 12$ and $12 \mid 60$. Furthermore $43 \equiv 7(\bmod 12)$ and $43 \equiv 1$ $(\bmod 3)$.

So the unique solution to this system is $x \equiv 43 \quad(\bmod 60)$.
[5] Question 2. Find all solutions to $x^{3}+x^{2}+3 x+1 \equiv 0(\bmod 21)$.
[Arithmetic help: $1^{3} \equiv 2^{3} \equiv 4^{3} \equiv 1 \quad(\bmod 7)$ and $\left.3^{3} \equiv 5^{3} \equiv 6^{3} \equiv-1 \quad(\bmod 7).\right]$
Remark: Not only was there a typo is the "Help" line (5 instead of 6) which mostly didn't matter; there was a bigger error of some sort in the coefficients of the polynomial. The intended solution had 3 solutions $(\bmod 21)$ coming from the unique solution of $x \equiv 1 \quad(\bmod 3)$ and the three solutions $x \equiv 1,2,4 \quad(\bmod 7)$. Somewhere along the line, something got transcribed incorrectly.
Solution: \quad Set $p(x)=x^{3}+x^{2}+3 x+1$. We check for solutions modulo 7 and calculate:

x	x^{3}	x^{2}	$3 x$	$p(x)$
0	0	0	0	1
1	1	1	3	6
2	1	4	6	5
3	-1	2	2	4
4	1	2	5	2
5	-1	4	1	5
6	-1	1	4	3

Since there are no solution modulo 7 , there are no solutions modulo 21 .

Question 3.

(a) Calculate $\phi(210,000)$.

Solution: $\quad 210,000=21 \times 10^{4}=3 \times 7 \times 2^{4} \times 5^{4}$.
So $\phi(210000)=2 \times 6 \times 2^{3} \times\left(5^{4}-5^{3}\right)=96 \times 125 \times 4=48,000$.
[3] (b) Find the prime power factorization of $\phi(12!)$.
Solution: $\quad 12!=12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2=11^{1} 7^{1} 5^{2} 3^{5} 2^{10}$.
$\phi(11)=10=2 \cdot 5, \phi(7)=6=2 \cdot 3, \phi(25)=25-5=20=2^{2} 5, \phi\left(3^{5}\right)=3^{5}-3^{4}=3^{4} 2$, and $\phi\left(2^{10}\right)=2^{9}$.

Since ϕ is multiplicative, the prime power factorization of $\phi(12!)$ is $2^{14} 3^{5} 5^{2}$.
[3] Question 4. Prove that if n has k distinct odd prime factors, then $2^{k} \mid \phi(n)$.
Proof: $\quad \phi(n)=\prod_{p \mid n}\left(p^{\alpha_{p}}-p^{\alpha_{p}-1}\right)$, where α_{p} is the exponent of p in the prime power factorization of n.

But $p^{\alpha_{p}}-p^{\alpha_{p}-1}=p^{\alpha_{p}-1}(p-1)$, and since p is odd, $2 \mid(p-1)$. There are k such prime factors, so $2^{k} \mid \phi(n)$.
[5] Question 5. Suppose that $b \equiv a^{53}(\bmod 91)$ and that $(a, 91)=1$. Find a positive number \bar{k} such that $b^{\bar{k}} \equiv a \quad(\bmod 91)$. If $b=67$, what is a ?.
Solution: $\quad 91=7 \times 13$, so $\phi(91)=6 \times 12=72=9 \times 8$. We need to solve $1 \equiv 53 \bar{k} \quad(\bmod 72)$, so since 9 and 8 are relatively prime, we have a fairly easy task: Modulo $9,1 \equiv 53 \bar{k} \equiv-1 \bar{k}$ $(\bmod 9)$ so $\bar{k} \equiv-1 \quad(\bmod 9)$. Thus $\bar{k}=9 t-1$ for some t, and modulo $8,1 \equiv 53(9 t-1) \equiv$ $5(t-1) \equiv 5 t-5 \quad(\bmod 8)$, so $5 t \equiv 6 \quad(\bmod 8)$, so $t \equiv 6 \quad(\bmod 8)$.

Therefore $t=8 s+6$ and $\bar{k}=9(8 s+6)-1=72 s+53$. So we can take $\bar{k}=53$.
Hence $a \equiv b^{53} \quad(\bmod 91)$ and so we calculate:

$$
b^{2} \equiv 30 ; b^{4} \equiv 81 ; b^{8} \equiv 9 ; b^{16} \equiv 81 ; b^{32} \equiv 9 \quad(\bmod 91)
$$

and $53=32+16+4+1$ so

$$
b^{53} \equiv b^{32} b^{16} b^{4} b \equiv 9 \cdot 81 \cdot 81 \cdot 67 \equiv 58 \quad(\bmod 91)
$$

Remark: Any sort of explanation of where " 58 " came from was acceptable, but I did want to see something. I also accepted using the Euclidean algorithm and $(53,72)=1$ to find the multiplicative inverse of 53 modulo 72 , although that is not nearly so efficient.

