MATH 2170-19W Problem Set 4

March 1, 2019
Solutions

Question 1.

[2]
(a) Let $m>1$ be an odd natural number. Prove that

$$
1 \cdot 3 \cdot 5 \cdot \ldots \cdot(m-2) \equiv(-1)^{\frac{m-1}{2}} \cdot 2 \cdot 4 \cdot 6 \cdot \ldots \cdot(m-1) \quad(\bmod m)
$$

[Hint: $1 \equiv-(m-1) \quad(\bmod m), 3 \equiv-(m-3) \quad(\bmod m), \ldots, m-2 \equiv-2 \quad(\bmod m)]$
Proof: This is just a re-naming of all the factors in the left hand component according to the hint. There are $\frac{m-1}{2}$ factors. So:

$$
\begin{aligned}
1 \cdot 3 \cdot 5 \cdot \ldots \cdot(m-2) & \equiv[-(m-1)][-(m-3)] \cdot \ldots \cdot(-4)(-2) \\
& \equiv(-1)^{\frac{m-1}{2}}[(m-1)(m-3) \cdot \ldots \cdot 4 \cdot 2] \\
& \equiv(-1)^{\frac{m-1}{2}} \cdot 2 \cdot 4 \cdot 6 \cdot \ldots \cdot(m-1) \quad(\bmod m)
\end{aligned}
$$

[4] (b) If p is an odd prime, prove that

$$
1^{2} \cdot 3^{2} \cdot 5^{2} \cdot \ldots \cdot(p-2)^{2} \equiv(-1)^{\frac{p+1}{2}} \equiv 2^{2} \cdot 4^{2} \cdot 6^{2} \cdot \ldots \cdot(p-1)^{2} \quad(\bmod p)
$$

[Hint: Use Part (a), and rearrange the Wilson's Theorem formula in two different ways.]
Proof: By Wilson's Theorem, $1 \cdot 2 \cdot 3 \cdot \ldots \cdot(p-1) \equiv-1 \quad(\bmod p)$. Grouping together first all the odd factors and then all the even factors, we get

$$
[1 \cdot 3 \cdot 5 \cdot \ldots \cdot(p-2)] \cdot[2 \cdot 4 \cdot 6 \cdot \ldots \cdot(p-1)] \equiv-1 \quad(\bmod p) .
$$

We can simplify this in two ways by part (a), either by converting the first group of factors to the second; or by converting the second group to the first.
So in the first case we get

$$
\left[(-1)^{\frac{p-1}{2}} \cdot 2 \cdot 4 \cdot 6 \cdot \ldots \cdot(p-1)\right] \cdot[2 \cdot 4 \cdot 6 \cdot \ldots \cdot(p-1)] \equiv-1 \quad(\bmod p),
$$

which after grouping similar factors and gathering powers of (-1) gives

$$
2^{2} \cdot 4^{2} \cdot 6^{2} \cdot \ldots \cdot(p-1)^{2} \equiv(-1)(-1)^{\frac{p-1}{2}} \equiv(-1)^{\frac{p+1}{2}} \quad(\bmod p) .
$$

If we make the alternate conversion, we get the other part of the formula that we were supposed to prove.
[2] Question 2. Take note that $17=1^{2}+4^{2}=4^{2}+1^{2}$ and $13=2^{2}+3^{2}$
Write $221=13 \cdot 17$ as a sum of two squares in two different ways.
Solution: We have

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2}
$$

The "Note" indicates we should work this out in two ways, taking first $a=1, b=4$ and $c=2 d=3$ and in the second case $a=1, b=4$ and $c=3 d=2$.

We get

$$
\begin{aligned}
& 221=(2-12)^{2}+(3+8)^{2}=10^{2}+11^{2} \\
& 221=(8-3)^{2}+(12+2)^{2}=5^{2}+14^{2}
\end{aligned}
$$

[4] Question 3. Write each of the following as a sum of two squares.
(a) 1960
(b) 121, 000

Solution: There are quite a few different pathways to a correct solution. I think that this is the most efficient. You did have to give some sort of explanation here of how you found your answer.
(a) $1960=2^{3} 3^{7} 5=(2 \times 7)^{2} \times 10$, and $10=1^{2}+3^{2}$. So $1960=14^{2}+42^{2} . . /$
(b) $121000=11^{2} \times 10^{3}=(11 \times 10)^{2} \times 10.10=1^{2}+3^{2}$. So $121000=(110 \times 1)^{2}+(110 \times 3)^{2}=$ $110^{2}+330^{2}$
[4] Question 4. Solve $55 x \equiv 91$ (mod 108) by solving a pair of congruences, one modulo 4, the other modulo 27.
Solution: \quad So if $55 x \equiv 91 \quad(\bmod 108)$ then $3 x \equiv 3 \quad(\bmod 4)$ and $x \equiv 10 \quad(\bmod 27)$. So $x \equiv 1 \quad(\bmod 4)$.

Furthermore, $x=10+27 t$ for some t. Therefore $10+27 t \equiv 1(\bmod 4)$, or $3 t \equiv 3$ $(\bmod 4)$. So $t \equiv 1 \quad(\bmod 4)$ and for some $s, t=1+4 s$.

Therefore $x=10+27(1+4 s)=37+108 s$.
The unique solution modulo 108 is $x \equiv 37 \quad(\bmod 108)$.
[4] Question 5. Find the smallest positive integer solution to

$$
\begin{aligned}
x & \equiv 3 \quad(\bmod 14) \\
x & \equiv 4 \quad(\bmod 15) \\
x & \equiv 5 \quad(\bmod 11)
\end{aligned}
$$

Solution: I prefer to start with the largest modulus for reasons of computational efficiency, but any order will work.

So $x=4+15 r$ for some r.
Therefore $4+15 r \equiv 3 \quad(\bmod 14)$, or $r \equiv-1 \equiv 13 \quad(\bmod 14)$.
Thus $r=13+14 s$ for some s, so $x=4+15(13+14 s)=199+210 s$.
Therefore $199+210 s \equiv 5 \quad(\bmod 11)$, or $1+s \equiv 5 \quad(\bmod 11)$, so $s \equiv 4 \quad(\bmod 11)$.
Thus $s=4+11 t$ for some t, so $x=199+210(4+11 t)=1039+2310 t$.
There is a unique solution modulo $2310=14 \times 15 \times 11$, namely $x \equiv 1039 \quad(\bmod 2310)$.

