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Solutions

Question 1.
(a) Let m > 1 be an odd natural number. Prove that[2]

1 · 3 · 5 · . . . · (m− 2) ≡ (−1)
m−1

2 · 2 · 4 · 6 · . . . · (m− 1) (mod m)

[Hint: 1 ≡ −(m− 1) (mod m) , 3 ≡ −(m− 3) (mod m) , . . . , m− 2 ≡ −2 (mod m)]

Proof: This is just a re-naming of all the factors in the left hand component according
to the hint. There are m−1

2 factors. So:

1 · 3 · 5 · . . . · (m− 2) ≡ [−(m− 1)][−(m− 3)] · . . . · (−4)(−2)

≡ (−1)
m−1

2 [(m− 1)(m− 3) · . . . · 4 · 2]

≡ (−1)
m−1

2 · 2 · 4 · 6 · . . . · (m− 1) (mod m)

(b) If p is an odd prime, prove that[4]

12 · 32 · 52 · . . . · (p− 2)2 ≡ (−1)
p+1
2 ≡ 22 · 42 · 62 · . . . · (p− 1)2 (mod p)

[Hint: Use Part (a), and rearrange the Wilson’s Theorem formula in two different ways.]

Proof: By Wilson’s Theorem, 1 · 2 · 3 · . . . · (p − 1) ≡ −1 (mod p) . Grouping together
first all the odd factors and then all the even factors, we get

[1 · 3 · 5 · . . . · (p− 2)] · [2 · 4 · 6 · . . . · (p− 1)] ≡ −1 (mod p) .

We can simplify this in two ways by part (a), either by converting the first group of factors
to the second; or by converting the second group to the first.

So in the first case we get

[(−1)
p−1
2 · 2 · 4 · 6 · . . . · (p− 1)] · [2 · 4 · 6 · . . . · (p− 1)] ≡ −1 (mod p) ,

which after grouping similar factors and gathering powers of (−1) gives

22 · 42 · 62 · . . . · (p− 1)2 ≡ (−1)(−1)
p−1
2 ≡ (−1)

p+1
2 (mod p) .

If we make the alternate conversion, we get the other part of the formula that we were
supposed to prove.
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Question 2. Take note that 17 = 12 + 42 = 42 + 12 and 13 = 22 + 32[2]

Write 221 = 13 · 17 as a sum of two squares in two different ways.
Solution: We have

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad + bc)2

The “Note” indicates we should work this out in two ways, taking first a = 1, b = 4 and
c = 2 d = 3 and in the second case a = 1, b = 4 and c = 3 d = 2 .

We get
221 = (2 − 12)2 + (3 + 8)2 = 102 + 112

221 = (8 − 3)2 + (12 + 2)2 = 52 + 142

Question 3. Write each of the following as a sum of two squares.[4]

(a) 1960 (b) 121, 000

Solution: There are quite a few different pathways to a correct solution. I think that this
is the most efficient. You did have to give some sort of explanation here of how you found your
answer.
(a) 1960 = 23375 = (2 × 7)2 × 10 , and 10 = 12 + 32 . So 1960 = 142 + 422 ../

(b) 121000 = 112×103 = (11×10)2×10 . 10 = 12 +32 . So 121000 = (110×1)2 +(110×3)2 =
1102 + 3302

Question 4. Solve 55x ≡ 91 (mod 108) by solving a pair of congruences, one modulo 4, the[4]

other modulo 27.
Solution: So if 55x ≡ 91 (mod 108) then 3x ≡ 3 (mod 4) and x ≡ 10 (mod 27) . So
x ≡ 1 (mod 4) .

Furthermore, x = 10 + 27t for some t . Therefore 10 + 27t ≡ 1 (mod 4) , or 3t ≡ 3
(mod 4) . So t ≡ 1 (mod 4) and for some s , t = 1 + 4s .

Therefore x = 10 + 27(1 + 4s) = 37 + 108s .
The unique solution modulo 108 is x ≡ 37 (mod 108) .

Question 5. Find the smallest positive integer solution to[4]

x ≡ 3 (mod 14)

x ≡ 4 (mod 15)

x ≡ 5 (mod 11)

Solution: I prefer to start with the largest modulus for reasons of computational efficiency,
but any order will work.

So x = 4 + 15r for some r .
Therefore 4 + 15r ≡ 3 (mod 14) , or r ≡ −1 ≡ 13 (mod 14) .
Thus r = 13 + 14s for some s , so x = 4 + 15(13 + 14s) = 199 + 210s .
Therefore 199 + 210s ≡ 5 (mod 11) , or 1 + s ≡ 5 (mod 11) , so s ≡ 4 (mod 11) .
Thus s = 4 + 11t for some t , so x = 199 + 210(4 + 11t) = 1039 + 2310t .
There is a unique solution modulo 2310 = 14 × 15 × 11 , namely x ≡ 1039 (mod 2310) .
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