MATH 2170-19W Problem Set 3

February 7, 2019

Solutions

[6] Question 1. Given $a=2^{8} 5^{4} 7^{3} 11^{4} 17^{1}$ and $b=2^{5} 3^{5} 5^{3} 11^{2} 13^{3}$, find the prime power factorizations of $(a, b),[a, b]$, and $a b$.
Solution: We had the formulas for these given in a theorem in class. The gcd is given by chosing the minimum exponent for each prime; the lcm is given by chosing the maximum exponent for each prime; and the product is given simply by taking the sums of the exponents for each prime. So:

$$
\begin{aligned}
& (a, b)=2^{5} 5^{3} 11^{2}, \\
& {[a, b]=2^{8} 3^{5} 5^{4} 7^{3} 11^{4} 13^{3} 17, \text { and }} \\
& a b=2^{13} 3^{5} 5^{7} 7^{3} 11^{6} 13^{3} 17 .
\end{aligned}
$$

[5] Question 2. Find all four pairs of numbers $\langle a, b\rangle$ with $0<a \leq b,(a, b)=35$ and $[a, b]=$ 4900.

Remark: This solution is provided with a lot of additional explanation. The marks are awarded primarily for finding the four pairs of numbers. A point will be taken off only if no explanation at all is provided.
Solution: $\quad 35=5^{1} 7^{1}$ and $4900=2^{2} 5^{2} 7^{2}$.
By the formulas for calculating gcd and lcm, the minimum exponent of each of $2,3,5$ in a or b must be $0,1,1$ respectively, and the maximum value must be 2,22 respectively. This apparently gives us 8 choices for a and b (two choices for each of the three exponents) but the requirement that $a<b$ reduces this to four pairs:

powers of	2	5	7		2	5	7	
	0	1	1	35	2	2	2	4900
	0	1	2	245	2	2	1	700
	0	2	1	175	2	1	2	980
	0	2	2	1225	2	1	1	140

the next 4 rows repeat the ones above, in reverse order
giving us the four pairs $\langle 35,4900\rangle,\langle 245,700\rangle,\langle 175,980\rangle$, and $\langle 140,1225\rangle$.
[4] Question 3. Show that every positive integer can be written uniquely in the form $n=a b$, where a is square free and b is a square.
Proof: $\quad 1$ is trivially both square and square free.
So suppose $n>1$ and has prime power factorization

$$
n=p_{1}{ }^{k_{1}} \times \cdots \times p_{t}^{k_{t}},
$$

the p_{i} being distinct primes actually occurring in the factorization of n. Recall that n is a perfect square iff all the exponents are even, and n is square-free if it has no square divisors, hence iff all the exponents are 1. For each i, write $k_{i}=2 q_{i}+r_{i}, r_{i}=0$ or 1 . Then $n=$ $\left(\prod_{i=1}^{t} p_{i}^{q_{i}}\right)^{2} \times\left(\prod_{i=1}^{t} p_{i}^{r_{i}}\right)$, clearly a product of a perfect square and a square-free integer.

Note: There several are different ways of presenting this solution.
One could also write $n=\left(\prod_{i=1}^{t} p_{i}^{q_{i}}\right)^{2} \times\left(\prod_{i=1,\left(r_{i}=1\right)}^{t} p_{i}\right)$, for instance.
[5] Question 4. Observe that $(4 m+1)(4 n+1)=4(4 m n+m+n)+1$ and that $4 m+3)(4 n+3)=$ $4(4 m n+3 m+3 n+2)+1$.
Note: There was a misplaced parenthesis on the right hand side of the first equation.
Prove that every positive integer n of the form $4 k+3$ has an odd number of prime factors of the form $4 k+3$.
Proof: \quad Suppose that n has an even number $2 t$ of prime factors of the form $4 k+3$. Then group them in pairs $\left(p_{1} p_{t+1}\right)\left(p_{2} p_{t+2}\right) \cdot \ldots \cdot\left(p_{t} p_{2 t}\right)$. By the second formula given, each one of these products is of the form $4 k+1$, and by the first formula given, any product of numbers of the form $4 k+1$ also has that form. So if n has the form $4 k+3$, it must have an odd number of prime factors of the form $4 k+3$.
Note: Clearly this same solution can be presented in a more elegant way using congruences $\bmod 4$, from the next chapter.
[20] TOTAL

