MATH 2170-19W Problem Set 1

January 24, 2019
SOLUTIONS
[3] Question 1. Prove:
If $a \mid c$ and $b \mid d$, then $a b \mid c d$.
Proof: If $a \mid c$ and $b \mid d$, then for some m and $n, a m=c$ and $b n=d$. Then $c d=(a m)(b n)=$ $(a b)(m n)$, so $a b \mid c d$.
[8] Question 2. An integer n is even if $2 \mid n$, and odd otherwise.
Prove:
(a) n is even iff $n=2 m$ for some integer m, and n is odd iff $n=2 k+1$ for some integer k.

Proof: If n is an integer, then $n=2 q+r, 0 \leq r<2$. So $r=0$ or $r=1$. n is even iff $2 \mid n$ iff $r=0$, so n is odd iff $n=2 q+1$.
[1] (b) n is odd iff $n+1$ is even.
Proof: $\quad n$ is odd iff $n=2 m+$ for some m iff $n+1=2 m+1+1=2(m+1)$ iff niseven,.
(c) $n(n+1)$ is even.

Proof: By the preceding part, one of $n, n+1$ is even, that is, divisible by 2 , so $n(n+1)$ is divisible by 2 .
[3] (d) If n is odd, then $n^{2}-1$ is divisible by 8 .
Proof: If n is odd, then $n=2 m+1$ for some m, and so

$$
n^{2}-1=(2 m+1)^{2}-1=4 m^{2}+4 m+1-1=4 m(m+1) .
$$

By the preceding part, $m(m+1)$ is divisible by 2 , so $n^{2}-1=4 m(m+1)$ id divisible by 8 .

[6] Question 3.

(a) Prove that the remainder upon dividing $a x+b$ by a is the same as the remainder upon dividing b by a.
Proof: $\quad b=q a+r, 0 \leq r<a$, so $a x+b=a x+q a+r=a(x+q)+r$, so by the uniqueness of quotient and remainder, r is the remainder on dividing $a x+b$ by a.
[3] (b) If we divide an integer n by 5 , the possible remainders are $0,1,2,3,4$. What are the possible remainders when n^{2} is divided by 5 ?
[Hint: Set $n=5 k+r, 0 \leq r<5$.]
Solution: If $n=5 k+r, 0 \leq r<5$, then $n^{2}=25 k^{2}+10 k+r^{2}=5\left(5 k^{2}+2 k\right)+r^{2}$, so by the preceding part the remainder on dividing n^{2} by 5 is the same as the remainder on dividing r^{2} by 5 . But $0^{2}=1,1^{2}=1,2^{2}=4,3^{2}=9=5 \times 1+4$, and $4^{2}=16=5 \times 3+1$. So the remainder on dividing n^{2} by 5 is 0,1 , or 4 .
[1] (c) Can an integer m ending in 3 be the square of an integer? (explain).
Solution: You can solve this in the same style as part (b), by considering the squares of the possible last digits $0,1,2,3,4,5,6,7,8,9$.
But it is much faster to use part (b): If $m=10 k+3$, then $m=5(2 k)+3$, so by part (b) m is not a square.
[3] Question 4. Here are diagrams of all the positive divisors of $n=10, n=20$, and $n=42$ respectively, drawn as in class. The divisors are arranged according to the divisibility relations: there is a line between two integers if the lower number divides the upper number, and no other divisor fits in between. Furthermore, in a horizontal row, we list the divisors in increasing order.

Draw a similar diagram showing the relations between all the positive divisors of 100 . $\left(100=2^{2} 5^{2}\right)$
Solution: From the hint we easily find the list of all positive divisors of $100: 1,2,4,5$, $10,20,25,50,100$.

[20] TOTAL

