MATH 2170-19W Problem Set 8
 April 1, 2019
 Due: in class, Wednesday, April 03, 2019

$g=2$ is a primitive root modulo 19.
Use the following table to assist you in the solution of the first two questions and 4 (a). The most efficient solutions involve the use of the table and the application of theory; numerically correct solutions involving long computations will not receive full credit.

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
g^{t}	2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1

Question 1.

[3] Question 5. Suppose that p is a prime and $(a, p)=1=(b, p)$.
[Recall the formula for $\left(\frac{a b}{p}\right)$.]
Show that $a b$ is a quadratic residue modulo p if both a and b are quadratic residues modulo p or if neither a nor b is a quadratic residue modulo p, and that $a b$ is a quadratic non-residue modulo p if exactly one of a or b is a quadratic non-residue modulo p.
[20] TOTAL

