MATH 2170-19W Problem Set 7

March 20, 2019
Due: in class, March 27, 2019
[8] Question 1. Recall that \mathbb{Z}_{7} denotes the set $\{0,1,2,3,4,5,6\}$ together with the operations of addition and multiplication modulo 7 . Recall that every non-zero element of \mathbb{Z}_{7} has a multiplicative inverse modulo 7 :

$$
1 \cdot 1 \equiv 1 \quad(\bmod 7), \quad 2 \cdot 4 \equiv 1 \quad(\bmod 7), \quad 3 \cdot 5 \equiv 1 \quad(\bmod 7,) \quad 6 \cdot 6 \equiv 1 \quad(\bmod 7)
$$

Consider the following system of congruences:

$$
\left\{\begin{aligned}
3 w+5 x+5 y+2 z & \equiv 1 \\
2 w+x+3 y+5 z & \equiv 4 \quad(\bmod 7) \\
2 w o d &
\end{aligned}\right.
$$

Using only the method of Gaussian elimination with back substitution, or the method of GaussJordan elimination, from first year Linear Algebra, [row reduction in matrix form, no column operations] and only arithmetic in \mathbb{Z}_{7}, find all solutions to this system. Give your solution in vector form.

Question 2.

[2] (a) Find all Pythagorean triples where one of x, y, and z is equal to 17 .
[2] (b) Find all primitive Pythagorean triples where $y=30$, if any.
[4] Question 3. Prove that if $\langle x, y, z\rangle$ is a Pythagorean triple, then one of x, y, z is divisible by 3 , and one of x, y, z is divisible by 5 .
[4] Question 4. $g=2$ is a primitive root modulo 19.

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
g^{t}	2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1

Use this information to calculate the least residue modulo 19 of
(a) $4 \cdot 5 \cdot 7 \cdot 11 \cdot 15 \cdot 17$
(b) 12^{100}
[20] TOTAL

