MATH 2170-19W Problem Set 4

February 14, 2019
Due: in class, February 27, 2019

Question 1.

[2] (a) Let $m>1$ be an odd natural number. Prove that

$$
1 \cdot 3 \cdot 5 \cdot \ldots \cdot(m-2) \equiv(-1)^{\frac{m-1}{2}} \cdot 2 \cdot 4 \cdot 6 \cdot \ldots \cdot(m-1) \quad(\bmod m)
$$

[Hint: $1 \equiv-(m-1) \quad(\bmod m), 3 \equiv-(m-3) \quad(\bmod m), \ldots, m-2 \equiv-2 \quad(\bmod m)]$
[4] (b) If p is an odd prime, prove that

$$
1^{2} \cdot 3^{2} \cdot 5^{2} \cdot \ldots \cdot(p-2)^{2} \equiv(-1)^{\frac{p+1}{2}} \equiv 2^{2} \cdot 4^{2} \cdot 6^{2} \cdot \ldots \cdot(p-1)^{2} \quad(\bmod p)
$$

[Hint: Use Part (a), and rearrange the Wilson's Theorem formula in two different ways.]
[2] Question 2. Take note that $17=1^{2}+4^{2}=4^{2}+1^{2}$ and $13=2^{2}+3^{2}$ Write $221=13 \cdot 17$ as a sum of two squares in two different ways.
[4] Question 3. Write each of the following as a sum of two squares.
(a) 1960
(b) 121,000
[4] Question 4. Solve $55 x \equiv 91(\bmod 108)$ by solving a pair of congruences, one modulo 4 , the other modulo 27.
[4] Question 5. Find the smallest positive integer solution to

$$
\begin{aligned}
x & \equiv 3 \\
x & (\bmod 14) \\
x & \equiv 4(\bmod 15) \\
x & \equiv 5(\bmod 11)
\end{aligned}
$$

[20] TOTAL

