I understand that cheating is a serious offence:

Signature:

$$
(I n I n k)
$$

1. Let a, b, m, be integers, $m>1$.
(a) Define $a \mid b$.

Solution: $a \mid b$ iff for some $d, a d=b$.
(b) Define $a \equiv b(\bmod m)$.

Solution: $a \equiv b(\bmod m)$ iff $m \mid(b-a)$.
(c) Complete each of the following equations (no explanation required):
i. $(a, 0)=$
ii. $(a, 1)=$
iii. $[a, 0]=$
iv. $[a, 1]=$

Solution:

i. $(a, 0)=a$
ii. $(a, 1)=1$
iii. $[a, 0]=0$
iv. $[a, 1]=a$

UNIVERSITY OF MANITOBA

 TEST 1 SOLUTIONSCOURSE: MATH 2170
DURATION: 45 minutes
DATE \& TIME: February 11, 2019, 16:30-17:15
PAGE: 3 of 7
2. Let a, b, m, be integers, $m>1$.
(a) Prove that if $(a, m)=1$ and $(b, m)=1$ then $(a b, m)=1$.

Note: Prove this using properties of the gcd and of divisibility, not properties of prime numbers.

Solution: There are x and y such that $a x+m y=1$, and there are u and v so that $b u+m v=1$.

So $a x=1-m y$ and $b u=1-m v$.
Therefore $a b(x u)=(1-m y)(1-m v)=1-m(x+y-m x y)$, so $(a b, m)=1$.

Solution: Note: A solution by checking common prime divisors, contrary to the instructions, was worth at most 1. [This result was one of the tools that we used to prove the properties of prime numbers.]
Suppose $1<d=(a b, m)$. Then there is a prime $p, p \mid d$. Thus $p \mid a b$ and $p \mid m$. Since p is prime, $p \mid a$ or $p \mid b$ (and $p \mid m)$. But $(a, m)=1$ and $(b, m)=1$, a contradiction.
(b) Prove that if $c \mid a b$ and $(b, c)=1$, then $c \mid a$.

Solution: $(a b, a c)=a(b, c)=a$.
But $c \mid a b$ and $c \mid a c$, so $c \mid a$.

Solution: Since $(b, c)=1$ there are integers x and y such that $b x+c y=1$. Thus $a b x+a c y=a$. By assumption $c \mid a b$, and certainly $c \mid a c$. Therefore $c \mid a$.

UNIVERSITY OF MANITOBA

 TEST 1 SOLUTIONSCOURSE: MATH 2170
DATE \& TIME: February 11, 2019, 16:30-17:15

PAGE: 4 of 7
[8] 3. Using the Euclidean algorithm, and the specific algorithm taught in class and in the textbook, determine $d=(10680,4628)$ and two integers x and y so that $d=10680 x+4628 y$.

Solution: We learned the following formulas: $r_{-1}=a, r_{0}=b, q_{i+1}$ is determined by division: $r_{i-1}=r_{i} q_{i+1}+r_{i+1}, 0 \leq r_{i+1}<r_{i}$, so we get rules as follows (with $x_{-1}=1$, $y_{-1}=0, x_{0}=0$, and $y_{0}=1$):

$$
\left\{\begin{array}{l}
r_{k}=r_{k-2}-q_{k} r_{k-1} \\
x_{k}=x_{k-2}-q_{k} x_{k-1} \\
y_{k}=y_{k-2}-q_{k} y_{k-1}
\end{array}\right.
$$

Therefore in this case:

q_{i+1}	r_{i}	x_{i}	y_{i}
	10680	1	0
2	4628	0	1
3	1424	1	-2
4	356	-3	7
	0		

Therefore $d=356=-3 \times 10680+7 \times 4628$.

Note: A "long form" solution contrary to the instructions is worth a maximum of 4 points.
[2] 4. (a) Define " p is a prime number".
Solution: An integer p is a prime number if $p>1$ and there is no divisor d of p with $1<d<p$.
or
An integer $p>1$ is a prime number if p has exactly two positive divisors, namely itself and 1.

Note: It is an essential part of this definition that p be greater than 1 , and that reference is made to positive divisors. Otherwise, we would have to consider 1 and -1 to be primes, and we would have to contend with the four divisors of p : $1,-1, p,-p$.
[4] (b) Prove that there are infinitely many prime numbers.
Solution: Suppose that p_{1}, \ldots, p_{n} is a list of all the prime numbers.
Let $N=p_{1} \times \cdots \times p_{n}+1$.
N has a prime divisor p.
The remainder on dividing N by any one of p_{1}, \ldots, p_{n} is 1 , so p is not one of p_{1}, \ldots, p_{n}.
Therefore p_{1}, \ldots, p_{n} was not a list of all the prime numbers.

Alternatively, suppose P is the largest prime number and let $N=P!+1$.

Note: It is not enough to say that N is not divisible by any of the p_{i}; you need to say why.

UNIVERSITY OF MANITOBA TEST 1 SOLUTIONS

COURSE: MATH 2170
DURATION: 45 minutes
DATE \& TIME: February 11, 2019, 16:30-17:15
PAGE: 6 of 7
[2] 5. (a) Define Euler's function $\phi(m)$.
Solution: $\phi(m)$ is the number of elements in a reduced residue system modulo m.
or
$\phi(m)$ is the number of positive integers less than or equal to m and relatively prime to m,
(b) State Euler's Theorem.

Solution: If $(a, m)=1$ then $a^{\phi(m)} \equiv 1(\bmod m)$.
(c) Give a reduced residue system modulo 10 consisting of multiples of 3 .

Solution: The usual reduced residue system modulo 10 is $1,3,7,9$. Adding multiples of 10 to any item in the list does not change the fact that this is a reduced residue systemt modulo 10 .
So we get 21, 3, 27, 9 as one possible answer amongst many.

UNIVERSITY OF MANITOBA

TEST 1 SOLUTIONS
COURSE: MATH 2170
DURATION: 45 minutes
DATE \& TIME: February 11, 2019, 16:30-17:15
PAGE: 7 of 7
[4] 6. Find the least positive residue of 50 ! modulo 53 .

Solution: By Wilson's Theorem, $52!\equiv-1(\bmod 53)$ since 53 is a prime. So:
$-1 \equiv 52!\equiv 50!(51)(52) \equiv 50!(-2)(-1) \equiv 50!(2)(\bmod 53)$.
But clearly $2 \times 27=54 \equiv 1(\bmod 53)$, so:
$(-1) 27 \equiv 50!(2)(27) \equiv 50!(\bmod 53)$.
Therefore

$$
50!\equiv-27 \equiv 26 \quad(\bmod 53)
$$

