COURSE: MATH 2170 DATE & TIME: February 11, 2019, 16:30–17:15 DURATION: 45 minutes PAGE: 1 of 7

I understand that cheating is a serious offence:

Signature:

(In Ink)

COURSE: MATH 2170

DATE & TIME: February 11, 2019, 16:30–17:15

DURATION: 45 minutes PAGE: 2 of 7

1. Let a, b, m, be integers, m > 1.

[1] (a) Define a|b.

Solution: a|b iff for some d, ad = b.

[1] (b) Define $a \equiv b \pmod{m}$.

Solution: $a \equiv b \pmod{m}$ iff m | (b - a).

- [4] (c) Complete each of the following equations (no explanation required):
 - i. (a, 0) = ______ ii. (a, 1) = ______ iii. [a, 0] = ______ iv. [a, 1] =

Solution:

i.	(a, 0) = a
ii.	(a, 1) = 1
iii.	[a, 0] = 0
iv.	[a, 1] = a

COURSE: MATH 2170 DATE & TIME: February 11, 2019, 16:30–17:15

2. Let a, b, m, be integers, m > 1.

[3] (a) Prove that if (a, m) = 1 and (b, m) = 1 then (ab, m) = 1.

Note: Prove this using properties of the gcd and of divisibility, *not* properties of prime numbers.

Solution: There are x and y such that ax + my = 1, and there are u and v so that bu + mv = 1. So ax = 1 - my and bu = 1 - mv.

Therefore ab(xu) = (1 - my)(1 - mv) = 1 - m(x + y - mxy), so (ab, m) = 1.

Solution: Note: A solution by checking common prime divisors, contrary to the instructions, was worth at most 1. [This result was one of the tools that we used to *prove* the properties of prime numbers.] Suppose 1 < d = (ab, m). Then there is a prime p, p|d. Thus p|ab and p|m. Since p is prime, p|a or p|b (and p|m). But (a,m) = 1 and (b,m) = 1, a

(b) Prove that if c|ab and (b, c) = 1, then c|a.

contradiction.

Solution: (ab, ac) = a(b, c) = a. But c|ab and c|ac, so c|a.

Solution: Since (b, c) = 1 there are integers x and y such that bx + cy = 1. Thus abx + acy = a. By assumption c|ab, and certainly c|ac. Therefore c|a.

[3]

COURSE: MATH 2170 DATE & TIME: February 11, 2019, 16:30–17:15

[8] 3. Using the Euclidean algorithm, and the specific algorithm taught in class and in the textbook, determine d = (10680, 4628) and two integers x and y so that d = 10680x + 4628y.

Solution: We learned the following formulas: $r_{-1} = a$, $r_0 = b$, q_{i+1} is determined by division: $r_{i-1} = r_i q_{i+1} + r_{i+1}$, $0 \le r_{i+1} < r_i$, so we get rules as follows (with $x_{-1} = 1$, $y_{-1} = 0$, $x_0 = 0$, and $y_0 = 1$):

$$\begin{cases} r_k &= r_{k-2} - q_k r_{k-1} \\ x_k &= x_{k-2} - q_k x_{k-1} \\ y_k &= y_{k-2} - q_k y_{k-1} \end{cases}$$

Therefore in this case:

q_{i+1}	r_i	x_i	y_i
	10680	1	0
2	4628	0	1
3	1424	1	-2
4	356	-3	7
	0		

Therefore $d = 356 = -3 \times 10680 + 7 \times 4628$.

Note: A "long form" solution contrary to the instructions is worth a maximum of 4 points.

[2] 4. (a) Define "p is a prime number".

to say why.

Solution: An integer p is a *prime number* if p > 1 and there is no divisor d of p with 1 < d < p. or An integer p > 1 is a *prime number* if p has exactly two positive divisors, namely itself and 1.

Note: It is an *essential* part of this definition that p be greater than 1, and that reference is made to *positive* divisors. Otherwise, we would have to consider 1 and -1 to be primes, and we would have to contend with the *four* divisors of p: 1, -1, p, -p.

[4] (b) Prove that there are infinitely many prime numbers.

Solution: Suppose that p_1, \ldots, p_n is a list of all the prime numbers. Let $N = p_1 \times \cdots \times p_n + 1$. N has a prime divisor p. The remainder on dividing N by any one of p_1, \ldots, p_n is 1, so p is not one of p_1, \ldots, p_n . Therefore p_1, \ldots, p_n was *not* a list of all the prime numbers. Alternatively, suppose P is the largest prime number and let N = P! + 1. **Note**: It is not enough to say that N is not divisible by any of the p_i ; you need [2] 5. (a) Define Euler's function $\phi(m)$.

Solution: $\phi(m)$ is the number of elements in a reduced residue system modulo m. or $\phi(m)$ is the number of positive integers less than or equal to m and relatively prime to $m_{,.}$

[2] (b) State Euler's Theorem.

Solution: If (a, m) = 1 then $a^{\phi(m)} \equiv 1 \pmod{m}$.

[2] (c) Give a reduced residue system modulo 10 consisting of multiples of 3.

Solution: The usual reduced residue system modulo 10 is 1, 3, 7, 9. Adding multiples of 10 to any item in the list does not change the fact that this is a reduced residue systemt modulo 10.

So we get 21, 3, 27, 9 as one possible answer amongst many.

COURSE: MATH 2170 DATE & TIME: February 11, 2019, 16:30–17:15 DURATION: 45 minutes PAGE: 7 of 7

[4] 6. Find the least positive residue of 50! modulo 53.

Solution: By Wilson's Theorem, $52! \equiv -1 \pmod{53}$ since 53 is a prime. So: $-1 \equiv 52! \equiv 50!(51)(52) \equiv 50!(-2)(-1) \equiv 50!(2) \pmod{53}$. But clearly $2 \times 27 = 54 \equiv 1 \pmod{53}$, so: $(-1)27 \equiv 50!(2)(27) \equiv 50! \pmod{53}$. Therefore $50! \equiv -27 \equiv 26 \pmod{53}$