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Summary of Mathematical Induction

The natural numbers 0, 1, 2, 3, ... are the heart and the core of this course. The set of
all natural numbers is denoted by N or by w. I tend to use N when I am thinking mostly
of arithmetic (addition and multiplication) and to use w when I am thinking mostly of order
0<1<2<3<.... The key fact about the natural numbers is that they come in order: there
is a first natural number 0; and given any natural number n there is a “next” natural number
n + 1. This is the foundation of the important techniques of proof by mathematical induction
and definition by recursion .

The natural numbers are a subset of the set of integers Z , which includes all the negatives
of the natural numbers. The set of positive integers is Z* =1,2,3, ....

Simple Induction: Suppose P(—) is some statement about natural numbers.
If

1. P(0) is true, and
2. whenever P(n) is true, then P(n + 1) is also true,

then
P(n) is true for all natural numbers n .

There are several other properties of natural numbers that are equivalent to “simple induc-
tion”

Complete Induction: Suppose P(—) is some statement about natural numbers.
Suppose that P(—) has the following property:

If P(k) is true for all £ < n, then P(n) is also true.

Then P(n) is true for all natural numbers n .

Well-ordering Principle: Let X be a non-empty set of natural numbers. Then X has a
smallest element.

In particular, suppose that P(—) is some statement about natural numbers, which is true
of at least one natural number. Then there is a least natural number k such that P(k) is true.



Shifting the origin We can “start at” any integer a. For instance, Simple Induction starting
at a reads:

Suppose P(—) is some statement about integers.
If

1. P(a) is true, and
2. whenever P(z) is true, then P(z + 1) is also true,

then
P(z) is true for all integers z with z > a.

Parallel to the process of Proof by Induction there is a process of Definition by Recursion.
(Here A* is the set of all k-tuples of elements of A, and @ represents such a k-tuple.)

Recursion Theorem (simple form): Let A be any non-empty set.
Let g be any function A¥ — A.
Let h be any function A¥ x Nx A — A.
Then there is a unique function F : A*¥ x N — A satisfying

F(@,0) = g(a)
F(d,n+1) = h(a,n,F(d,n))

For example, how do we usually define natural number exponents in terms of multiplication?
We write

20 =

2 = g

We define the exponent function F'(z,n) = x™ by using the scheme of the Recursion Theorem
with A being any of the usual number systems where multiplication makes sense (such as N,
Z,R,etc.), k=1, ¢g(x)=1and h(z,n,z) = zx.

In this course, A is almost always Z or N or ZT, and k is usually 1 or even 0, in which case
the definition by recursion looks like:

FO) = a
Fn+1) = h(n,F(n))

(where the initial value a is just some element of A).



