MATH 2170 Introduction to Number Theory
 January 17, 2017
 Summary of Mathematical Induction

The natural numbers $0,1,2,3, \ldots$ are the heart and the core of this course. The set of all natural numbers is denoted by \mathbb{N} or by ω. I tend to use \mathbb{N} when I am thinking mostly of arithmetic (addition and multiplication) and to use ω when I am thinking mostly of order $0<1<2<3<\ldots$. The key fact about the natural numbers is that they come in order: there is a first natural number 0 ; and given any natural number n there is a "next" natural number $n+1$. This is the foundation of the important techniques of proof by mathematical induction and definition by recursion.

The natural numbers are a subset of the set of integers \mathbb{Z}, which includes all the negatives of the natural numbers. The set of positive integers is $\mathbb{Z}^{+}=1,2,3, \ldots$.

Simple Induction: Suppose $P(-)$ is some statement about natural numbers. If

1. $P(0)$ is true, and
2. whenever $P(n)$ is true, then $P(n+1)$ is also true,
then
$P(n)$ is true for all natural numbers n.
There are several other properties of natural numbers that are equivalent to "simple induction"

Complete Induction: Suppose $P(-)$ is some statement about natural numbers. Suppose that $P(-)$ has the following property:

If $P(k)$ is true for all $k<n$, then $P(n)$ is also true.
Then $P(n)$ is true for all natural numbers n.
Well-ordering Principle: Let X be a non-empty set of natural numbers. Then X has a smallest element.

In particular, suppose that $P(-)$ is some statement about natural numbers, which is true of at least one natural number. Then there is a least natural number k such that $P(k)$ is true.

Shifting the origin We can "start at" any integer a. For instance, Simple Induction starting at a reads:

Suppose $P(-)$ is some statement about integers.
If

1. $P(a)$ is true, and
2. whenever $P(z)$ is true, then $P(z+1)$ is also true,
then
$P(z)$ is true for all integers z with $z \geq a$.
Parallel to the process of Proof by Induction there is a process of Definition by Recursion. (Here A^{k} is the set of all k-tuples of elements of A, and \vec{a} represents such a k-tuple.)

Recursion Theorem (simple form): Let A be any non-empty set.
Let g be any function $A^{k} \rightarrow A$.
Let h be any function $A^{k} \times \mathbb{N} \times A \rightarrow A$.
Then there is a unique function $F: A^{k} \times \mathbb{N} \rightarrow A$ satisfying

$$
\begin{aligned}
F(\vec{a}, 0) & =g(\vec{a}) \\
F(\vec{a}, n+1) & =h(\vec{a}, n, F(\vec{a}, n))
\end{aligned}
$$

For example, how do we usually define natural number exponents in terms of multiplication? We write

$$
\begin{aligned}
x^{0} & =1 \\
x^{n+1} & =x^{n} x
\end{aligned}
$$

We define the exponent function $F(x, n)=x^{n}$ by using the scheme of the Recursion Theorem with A being any of the usual number systems where multiplication makes sense (such as \mathbb{N}, \mathbb{Z}, \mathbb{R}, etc.), $k=1, g(x)=1$ and $h(x, n, z)=z x$.

In this course, A is almost always \mathbb{Z} or \mathbb{N} or \mathbb{Z}^{+}, and k is usually 1 or even 0 , in which case the definition by recursion looks like:

$$
\begin{aligned}
F(0) & =a \\
F(n+1) & =h(n, F(n))
\end{aligned}
$$

(where the initial value a is just some element of A).

