MATH 2170
 Introduction to Number Theory

Arithmetic Functions: Supplementary Notes.
 March, 2019

Definition An arithmetic function is a function $f: \mathbb{Z}^{+} \rightarrow \mathbb{C}$, where \mathbb{Z}^{+}is the set of positive integers. All the arithmetic functions that we care about in this course will have range included in \mathbb{Z}.

Some interesting and useful arithmetic functions.

Let $n>0$:

- $\underline{0}(n)=0, \quad \mathbb{1}(n)=1, \quad \operatorname{id}(n)=n$.
- $\underline{1}(n)=\left\{\begin{array}{ll}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{array}\right.$.
- $d(n)$ is the number of positive divisors of n.
- $\sigma(n)$ is the sum of the positive divisors of n.
- $\sigma_{k}(n)$ is the sum of the k-th powers of the positive divisors of n.
- $\omega(n)$ is the number of distinct primes that divide n.
- $\Omega(n)$ is the sum of the exponents in the prime power factorization of n.
- $\phi(n)$ is Euler's function: the number of elements in a reduced residue system modulo n.
- $\mu(n)$ is the Möbius function: $\mu(n)=\left\{\begin{array}{ll}(-1)^{\omega(n)} & \text { if } n \text { is square-free } \\ 0 & \text { otherwise }\end{array}\right.$.

Definition Note that this definition does NOT occur in Sections 4.2 and 4.3.
The convolution product: If f and g are arithmetic functions, then $f * g$ is the function defined by the rule

$$
f * g(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right) .
$$

Equivalently, we have $f * g(n)=\sum_{d_{1} d_{2}=n} f\left(d_{1}\right) g\left(d_{2}\right)$.
If we take $g=\mathbb{1}$, we see that $f * g(n)=\sum_{d \mid n} f(d)$. This is the particular case of the operation $*$ that is discussed in Sections 4.2 and 4.3; the main theorem about this special case, Theorem 4.4, generalizes to $*$ with virtually no change in the proof, as we shall see in class.

Some properties of the convolution

(i) $f * g=g * f$
(ii) $f *(g * h)=(f * g) * h$

Proof:
$(f *(g * h)(n))=\sum_{d_{1} d_{2}=n} f\left(d_{1}\right)(g * h)\left(d_{2}\right)=\sum_{d_{1} d_{2}=n} f\left(d_{1}\right)\left(\sum_{d_{3} d_{4}=d_{2}} g\left(d_{3}\right) h\left(d_{4}\right)\right)=$ $\sum_{d_{1} d_{3} d_{4}=n} f\left(d_{1}\right) g\left(d_{3}\right) h\left(d_{4}\right)$, and then we simplify grouping to the left instead of to the right to prove the result.
(iii) If we define the function $g+h$ by the rule $(g+h)(n)=g(n)+h(n)$, then $f *(g+h)=$ $f * g+f * h$.
(iv) $f * \underline{0}=\underline{0}, \quad f * \underline{1}=f$.
(v) $f * \mathbb{1}=\sum_{d \mid n} f(d)$, so $d(n)=\mathbb{1} * \mathbb{1}$ and $\sigma=\mathrm{id} * \mathbb{1}$.

Definition An arithmetical function $f \neq \underline{0}$ is called multiplicative if whenever $(m, n)=1$ then $f(m n)=f(m) f(n)$.
f is called totally multiplicative if $f(m n)=f(m) f(n)$ for all m and n.
Facts: Every totally multiplicative function is multiplicative.
$\underline{1}, \mathbb{1}$, and id are easily seen to be totally multiplicative. ϕ is multiplicative (Theorem 2.19). It follows from property (v) above and Theorem 4.6^{*} below that d and σ are multiplicative.
Ω and ω are examples of totally additive and additive functions respectively: arithmetic functions f that satisfy $f(m n)=f(m)+f(n)$ for all m, n, or for all m, n such that $(m, n)=1$ respectively.

It follows from the definition of μ and the laws of exponents that since ω is additive, μ is multiplicative.

We will prove the following version of Theorem 4.4:
Theorem 4.4*.
If f and g are multiplicative, then so is $f * g$.
We will then state and prove three important results in the text.
In the notation of convolutions, these are:
Theorem $4.6 \quad \phi * \mathbb{1}=\mathrm{id}$.
Theorem $4.7 \mu * \mathbb{1}=\underline{1}$.
Theorem 4.8 If $F=f * \mathbb{1}$ then $f=\mu * F$.

