MATH 1510 Tutorial Worksheet 6 Oct 23/Oct 25, 2007

Question 1. Find f'(t) if: (a) $f(t) = \log_{10}(10t + \sqrt{t^2 + 100})$ (b) $f(t) = e^{t^3 - 1}(t^4 + 3t)$ (c) $f(t) = \frac{e^t - \ln(t)}{t}$

Question 2.

(a) Find
$$\frac{dy}{dx}$$
 if $\ln(x^2 + y^2) = xy$

(b) Find the value of $\frac{d^2 y}{(dx)^2}$ at the point $\langle \mathbf{e}, 1 \rangle$ if $x \mathbf{e}^y - y = x^2 - 1$.

Question 3. Find f'(x) if (a) $f(x) = (1 + x^2)^{1/x^2}$

(b)
$$f(x) = \frac{(x^2+2)\sin(x+1)\mathbf{e}^{x^3}}{x^3\cos(x)}$$

Question 4. An enrichment question for thought and exploration! Don't expect to work this out in full during the tutorial.

Note that we would NEVER ask a question like this on a test or exam!

Consider the function $f(x) = e^x(a\cos(x) + b\sin(x))$, where a and b are non-zero constants. Find f'(x).

You should be able to see how to use the expression for f'(x) to work out f''(x), f'''(x), and $f^{(4)}(x)$ "mechanically", that is, without doing any more differentiation.

Can you see the pattern developing? Can you guess a general formula for $f^{(n)}(x)$? (Actually, you would have to set this up as a family of different formulas. The pattern for $f^{(4n)}(x)$ is the easiest one to figure out.)

[You can find such a formula in many references—maybe even in your textbook!]