MATH 1510 Problem Set 1

October 1, 2007

SOLUTIONS

Question 1. Evaluate the following limits:
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Solution: Since the denominator does not approach 0, this limit can be evaluated by direct
substitution: )
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Solution: Both the numerator and denominator approach 0 as x approaches 3/2, so we use

algebraic manipulation to solve the limit:
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Solution: Both the numerator and denominator approach 0 as x approaches —3, so we use
algebraic manipulation:
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Solution: The denominator approaches zero as = approaches —3, but the numerator does not.
Therefore this expression is unbounded near —3. When = < —3, the denominator is negative. The
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numerator is 2 — z + 6 and at x = —3 has the value 18 > 0. Therefore lim % =—c0. 1
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Solution:  The square root expression becomes very large positive, and if x+ — —oco, —z — 3 also
becomes very large positive. Therefore the limit does not exist: lim vz2+7z—4—2—3 = co. 1
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Question 2.

(a) Is the following function continuous at z = 17 at x = 37 If there are discontinuities at either of
these points, describe them as infinite, jump, or removable as the case may be.
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Note that there was a typographical error in the last line of this problem (z > 2 instead of z > 3)).

Solution: Since the function is defined by cases around the points in question, we have to work
out the solution by cases as well; that is, we have to consider left-hand and right-hand limits.
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Therefore, lim,_,; f(z) exists and equals 1. Since f(1) = 2, f is not continuous at x = 1; however
the discontinuity is removable.
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Therefore, lim, .3 f(z) does not exist since the right-hand and left hand limits are different; however
since both the right-hand and left hand limits exist, there is a jump discontinuity at = = 3. |

(b) Find a and b so that g(z) is continuous everywhere.
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Solution:  The function g is defined by cases. Within each of the open intervals (—oco, —1), (—1,2),
and (2,00), g is defined by a single polynomial function and is therefore continuous within each of
those intervals. At the points x = —1 and z = 2, we have to evaluate limits by taking left-hand and
right-hand limits.
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For continuity, at each point we must have the left-hand limit equal to the right-hand limit, and equal
to the value of the function at that point.

So we need —a+b=3 (=g(—1)) and 2a+b = —6 (= ¢g(2)). From this it follows easily that a = —3
and b =0 (and so g(—1) = 3 and g(2) = —6). 1



Question 3. Find the derivative of f(z) using the definition of the derivative.

Solution:  Note that f(x) is only defined for < 2.
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Note that there are several equivalent forms for writing the final answer; and that f'(z) is defined
only for z < 2.
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