The naive version of

the Fundamental Theorem of Calculus

Let $F(t)$ be the cumulative area function of $f(x)$ on the interval $[a, b]$. Suppose that $f(x)$ is continuous.
(a) $\quad F(t)$ is differentiable, and $F^{\prime}(t)=f(t)$ on $[a, b]$.

That is, F is an antiderivative of f on $[a, b]$. Furthermore, $F(a)=0$ and $F(b)=\mathbf{A}_{a}^{b} f(x)$.
(b) Let G be any antiderivative of $f(x)$ on $[a, b]$. Then

$$
\mathbf{A}_{a}^{b} f(x)=G(b)-G(a)
$$

Outline of proof of the Fundamental Theorem (1)

$$
\begin{aligned}
F^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{F(t+h)-F(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\mathbf{A}_{a}^{t+h} f(x)-\mathbf{A}_{a}^{t} f(x)\right. \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \mathbf{A}_{t}^{t+h} f(x)
\end{aligned}
$$

Outline of proof of the Fundamental Theorem (2)

For each $h>0$, since $f(x)$ is continuous, it has a minimum value m_{h} and a maximum value M_{h} on $[t, t+h]$. Comparing areas of rectangles and the area under the curve:

$$
\begin{aligned}
m_{h} & \leq f(x) \\
h m_{h} & \leq M_{h} \\
m_{h} & \leq \frac{1}{h} \mathbf{A}_{t}^{t+h}
\end{aligned} \leq h M_{h} \leq M_{h}
$$

Outline of proof of the Fundamental Theorem (3)

Since $f(x)$ is continuous,

$$
\lim _{h \rightarrow 0} m_{h}=f(t)=\lim _{h \rightarrow 0} M_{h}
$$

Therefore, by the Squeeze Theorem,

$$
F^{\prime}(t)=f(t)
$$

