What's missing?

We need to:

- 1. Define an operation A_a^b on functions.
- 2. Prove that this operation satisfies our four (and a little bit) intuitive ideas about area.
- 3. Prove that if f(x) is continuous, then $A_a^b f(x)$ is defined.

It pproximating areas by rectangles Area of the sum of the areas

Partitions of an interval

A partition \mathcal{P} of an interval [a, b] is given by a sequence of points $a = x_0 < x_1 < \cdots < x_n = b$.

These points divide the interval [a, b] into n subintervals. The length of the i-th subinterval is $\Delta x_i = x_i - x_{i-1}$.

The *norm* or *mesh* of \mathcal{P} is $\|\mathcal{P}\|$, the length of the longest subinterval in \mathcal{P} : the maximum value amongst Δx_1 , Δx_2 ,..., Δx_n .

We concentrate almost exclusively on *uniform* or *regular* partitions: this is a partion \mathcal{P}_n of [a,b] into n equal subintervals, so $\|\mathcal{P}_n\| = \frac{b-a}{n}$, and $x_0 = a$, $x_1 = a + \frac{b-a}{n}$,..., $x_i = a + \frac{i(b-a)}{n}$, $x_n = b$.

regular partition is a partition unto gubintervals of the same length The length of the i-th subunterval らムXi =X;-Xi-1 A regular partiren of [a,6] into subuntervals has &xi = b-a for all i

Sample points for a partition

Let $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$ be a partition of the interval [a, b].

A set of sample points for this partition is any sequence

$$S = x_1^*, x_2^*, \dots, x_n^*$$

such that x_i^* is in the *i*-th subinterval: $x_{i-1} \leq x_i^* \leq x_i$.

For a good general theory, we need to allow completely random choices of sample points, but for the purposes of this course we can "cheat" a little.

insert picture here

Special sample points

There are several special ways of choosing sample points that can make our work a lot easier:

Left hand endpoints: Always choose $x_i^* = x_{i-1}$.

Right hand endpoints: Always choose $x_i^* = x_i$.

Midpoints: Choose $x_i^* = \frac{1}{2}(x_{i-1} + x_i)$.

and if we are given a continuous function f(x) on [a, b]:

Maximum values: Always choose x_i^* so that $f(x_i^*)$ is a maximum on $[x_{i-1}, x_i]$.

Minimum values: Always choose x_i^* so that $f(x_i^*)$ is a minimum on $[x_{i-1}, x_i]$.

Riemann sums

Given a partition $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$ of [a, b] and a choice of sample points $\mathcal{S} = x_1^*, x_2^*, \dots, x_n^*$ for this partition, and a function f defined on [a, b], the associated *Riemann Sum* of f on [a, b] is

$$\mathcal{R}(f, \mathcal{P}, \mathcal{S}) = \sum_{i=1}^{n} f(x_i^*) \Delta x_i$$

Associated with our special choices of sample points are *left* Riemann sums, *right* Riemann sums, *upper* Riemann sums, and *lower* Riemann sums.

Definite integral

If we can force the Riemann sums of the function f(x) on the interval [a,b] to be as close to the number L as we want by taking the norm of the partition to be sufficiently small, then we say that the *definite integral* of f(x) on the interval [a,b] exists and equals L, and we write

$$\int_{a}^{b} f(x) \, dx = L$$