What's missing?

We need to:
1. Define an operation A% on functions.

2. Prove that this operation satisfies our four (and a little bit)
intuitive ideas about area.

3. Prove that if f(z) is continuous, then A%f(z) is defined.






Partitions of an interval

A partition P of an interval [a, b] is given by a sequence of points
a=xg<x1<---<zxTp=">.

These points divide the interval [a, b] into n subintervals. The
length of the i-th subinterval is Ax; = z; —x;_1 .

The norm or mesh of P is ||P||, the length of the longest subin-
terval in P : the maximum value amongst Az, Axzo,..., Azy.

We concentrate almost exclusively on uniform or regular parti-
tions: this is a partion P, of [a, b] into n equal subintervals, so
IPall =22, and 29 = a, o1 = a+ 29, .., o = a+ 70
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Sample points for a partition
Let P = {zqg, 21, --.,Zn } be a partition of the interval [a, b] .

A set of sample points for this partition is any sequence
S=ux3,z5,...,%),

such that z7 is in the ¢-th subinterval: z;_1 <z; < =x;.

For a good general theory, we need to allow completely random
choices of sample points, but for the purposes of this course we
can ‘“cheat” a little.

insert picture here
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Special sample points

There are several special ways of choosing sample points that
can make our work a lot easier:

Left hand endpoints: Always choose z; = x;_1 .
Right hand endpoints: Always choose :13;" =z, .
Midpoints: Choose x; = f})_—(mi_l + x;) .
and if we are given a continuous function f(xz) on |a, b]:

Maximum values: Always choose z; so that f(z}) is a maximum
on [:Bi—:b :B’L] .

Minimum values: Always choose z; so that f(z]) is a minimum
on [z;—1, x;] .
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Riemann sums

Given a partition P = {zq, 1, .-.,xn } Of [a, b] and a choice of
sample points S = z3, =3, ...,z for this partition, and a function
f defined on [a, b] , the associated Riemann Sum of f on [a, b] is

=1

Associated with our special choices of sample points are left
Riemann sums, right Riemann sums, upper Riemann sums, and
lower Riemann sums.
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Definite integral

If we can force the Riemann sums of the function f(xz) on the
interval [a, b] to be as close to the number L as we want by
taking the norm of the partition to be sufficiently small, then we
say that the definite integral of f(x) on the interval [a, b] exists
and equals L, and we write

/abf(cc)da:ZL
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