Apology: In this lecture I got off track on an example. I had actually meant to use it in a much simpler way than I tried in class; the full "working out" of what I started there is really beyond the scope of the course. But since I did start it in class, I include some details here.

Question: Is $f(x)=x^{2}$ well behaved near $a=2$? That is, if we have a good approximation of $x=2$, does $f(x)$ give us a good approximation of 4 ?

The intended response: Draw the graph of $y=x^{2}$. We are very familiar with this well-behaved curve from high-school. Part of this familiarity is that small changes in x produce small changes in y, allowing us to smoothly draw a curve connecting known points on the graph.

The answer is "obviously yes".
The somewhat over-the-top technical answer: What is $\lim _{x \rightarrow 2} x^{2}$?
Based on our understanding of the graph, we know that the answer should be 4 . So the questions is "If x is near 2 , is x^{2} always near 4 ?

Suppose that t is some small positive real number and we want to force x^{2} to be within t of 4 , that is, $\left|x^{2}-4\right|<t$. Can we do this by choosing x sufficiently close to 2 ?

Here's where things get awkward: we "look ahead" to see how the algebraic manipulations might work out, and "pull a rabbit out of a hat". [This is why I never intended to do this in a lecture!]

Let's force x to be close to 2 : We choose

$$
\sqrt{4-t}<x<\sqrt{4+t}
$$

Then

$$
4-t \leq x^{2}<4+t
$$

So, $\lim _{x \rightarrow 2} x^{2}=4$.
Comment Technically, this is not a particularly good way of explaining this either, but the "best way" would take us even further away from what is actually needed for MATH 1500 .

