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SOLUTIONS GUIDE

General comment: The INSTRUCTIONS included “You must show your work in order
to get marks.”

Question 1. Consider the system of equations[9]

x + a y = b, 2x + y = 6,

in the variables x, y.

• Find all pairs (a, b) such that the system has a unique solution.

• Find all pairs (a, b) such that the system has an infinite number of solutions.

• Find all pairs (a, b) such that the system has no solution.

Comments: This question tests your understanding of how to classify the three different
possibilities for the number of solutions of a system of linear equations. It is best done by
finding the augmented matrix of the system. It turns out that one step of row-reduction is
enough.

Solution: A system is inconsistent if it has a row-echelon form with a row where all
the entries corresponding to variables are 0, but the constant is different from 0. If there is
no such row, then the system must be consistent.

A consistent system has a unique solution if every variable corresponds to a “leading 1”.
A consistent system has infinitely many solutions if there are one or more “free variables”
(variables which do not correspond to a “leading 1”).[

1 a b
2 1 6

]
R2 − 2R1

[
1 a b
0 1− 2a 6− 2b

]
So there is a unique solution as long as 1− 2a 6= 0 , that is, whenever a 6= 1

2 .
On the other hand, if a = 1

2 then all the entries in the second row corresponding to
variables are 0, and so:

The system has infinitely many solutions if 6− 2b = 0 , that is, if a = 1
2 and b = 3 .

The system has no solution if 6− 2b 6= 0 , that is, if a = 1
2 and b 6= 3 .

Question 2. Find all pairs (p, q) such that matrix[8]  1 p− q 0 0
0 p + 2 q 1 0
0 0 0 p + q


is in reduced row-echelon form (RREF).

Comments: This question tests your understanding of the definition of row-reduced echelon
form . It is a fundamental error to try to row-reduce the given matrix. It was a common
error to assume that the entry in row 2, column 2 has to be zero, or that the entry in row
1, column 2 might be forced to be 1. It was a common oversight NOT to consider all of
the possibilities. Among successful solutions, some of you preferred to start “from the left”,
others “from the right”. A common source of errors was a poorly organized plan of attack.
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Solution: Version 1: For the given matrix to be in row-reduced echelon form, the entry
in row 2, column 2 must be 0 or 1 (and if it is 1, the entry above it must be 0; otherwise
the entry in row 1, column 2 can be any number), AND the entry in row 3, column 4 must
be 0 or 1. This gives (apparently) FOUR cases to consider.

If p + 2q = 1 then we also must have p − q = 0 , that is, p = q , and so p + 2p = 1 ,
that is, p = 1

3 and so q = 1
3 as well. But then p + q = 2

3 , and so we cannot satisfy either
condition on row 3, column 4.

If p + 2q = 0 then the entry above it can be any number, and so does not enter further
into the solution. So p = −2q . Now p + q = 0 or p + q = 1 , so 0 = −2q + q = −q or
1 = −2q+q = −q . So we find (in the first case) that (p, q) = (0, 0) and (in the second case)
that (p, q) = (2,−1) .

Solution: Version 2: For the given matrix to be in row-reduced echelon form, certainly
the entry in row 3, column 4 can be either 0 or 1. In the first case, q = −p , and in the
second case, q = 1− p . Putting these values into the second column of the matrix, we find
that it must have one of the following two forms: 1 2p 0 0

0 −p 1 0
0 0 0 0

  1 2p− 1 0 0
0 2− p 1 0
0 0 0 1


Now the entry in row 2, column 2 can be 0 or 1, and if is 1, the entry above it must be 0.
We check both matrices, and if we make row 2, column 2 equal to 1, the entry in row 1,
column 2 is not 1. If row 2, column 2 is 0, then (in the case of the first matrix) we find that
(p, q) = (0, 0) and (in the case of the second matrix) we find that (p, q) = (2,−1) .

Question 3. Let A =

[
2 −7
−1 3

]
. Find the inverse of A using the method of row-[10]

operations. (No credit will be given for any other method.)

Comment: Set up the augmented matrix [A | I] and row-reduce to [I | A−1] , if possible.
There are several equally valid pathways through the work, of which we show two.

A common ERROR was to fail to indicate which row operations you were using.

Solution: (Version 1)[
2 −7 1 0
−1 3 0 1

]
1
2R1

−→

[
1 −7

2
1
2 0

−1 3 0 1

]
−→

R2 + R1

[
1 −7

2
1
2 0

0 −1
2

1
2 1

]
−→
−2R2[

1 −7
2

1
2 0

0 1 −1 −2

]
R1 + 7

2R2

−→

[
1 0 −3 −7
0 1 −1 −2

]
Therefore A−1 =

[
−3 −7
−1 −2

]
Solution: (Version 2)[

2 −7 1 0
−1 3 0 1

]
R1 ↔ R2

−→

[
−1 3 0 1

2 −7 1 0

]
−R1

−→

[
1 −3 0 −1
2 −7 1 0

]
−→

R2 − 2R1[
1 −3 0 −1
0 −1 1 2

]
−→
−R2

[
1 −3 0 −1
0 1 −1 −2

]
R1 + 3R2

−→

[
1 0 −3 −7
0 1 −1 −2

]

Question 4. . Find all 2× 2 diagonal matrices A such that[6]

A2 −A = 2 I.

Comment: You must know what a diagonal matrix is!

Solution: Since A is a 2×2 diagonal matrix, for some constants a and b , A =

[
a 0
0 b

]
.

Then A2 − A =

[
a2 − a 0

0 b2 − b

]
and so a2 − a = 2 and b2 − b = 2 . Solving 0 =

a2 − a− 2 = (a− 2)(a + 1) , we find a = 2 or a = −1 , and similarly for b .
Therefore there are four solutions:[

2 0
0 2

] [
2 0
0 −1

] [
−1 0
0 2

] [
−1 0
0 −1

]
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Question 5. Let A =

 a b c
d e f
g h i

.[9]

Comments: This question tests your knowledge of basic facts about elementary row op-
erations, elementary matrices, and their connection to the evaluation of determinants.

The elementary matrix corresponding to a given elementary row operation is obtained
from the identity matrix of the appropriate size by performing that elementary row opera-
tion.

You must show your work in reasonable detail.

(1) Find an elementary matrix E1 such that E1A =

 g h i
d e f
a b c

.

Solution: The given matrix is obtained from A by interchanging row 1 and row 3,

so E1 is obtained from I3 in the same way: E1 =

 0 0 1
0 1 0
1 0 0



(2) Find an elementary matrix E2 such that A = E2

 a b c
d e f

g − 3d h− 3e i− 3f

.

Solution: A can be obtained from the given matrix by adding three times row 2 to

row 3, so E2 is obtained from I3 in the same way: E2 =

 1 0 0
0 1 0
0 3 1


(3) If it is given that det(A) = −3, then find the following determinant:∣∣∣∣∣∣

g h i
d e f

a− d b− e c− f

∣∣∣∣∣∣ .
Comment: If you interchange two rows of a matrix, you change the sign of the deter-
minant of the matrix. If you multiply a row of a matrix by a constant, you multiply the
value of the determinant by the same constant. Adding a multiple of one row to another
does not change the value of the determinant.

Solution: The matrix given in this part is obtained from A by subtracting row
2 from row 1, and then interchanging the result with row 3 (or, alternatively, by first
interchanging row 1 and row 3, and then subtracting row 2 from the (new) row 3.

In either case, since det(A) = −3 the determinant of the new matrix is (−1)(−3) = 3 .

Question 6. Let A =


−1 2 5 6

0 3 1 7
−2 6 2 −2

2 −3 4 3

. Find the cofactor C32 of A.[9]

Comment: The (i, j) cofactor of a square matrix A is (−1)i+jMij , where Mij is the
determinant of the matrix obtained from A by deleting row i and column j .

Solution: C3,2 = (−1)3+2 det

 −1 5 6
0 1 7
2 4 3

 .

You can evaluate the determinant by any method you want, although expansion by
cofactors along column 1 or along row 2 are the easiest options.

C3,2 = (−1)

[
(−1)

∣∣∣∣ 1 7
4 3

∣∣∣∣− 0

∣∣∣∣ 5 6
4 3

∣∣∣∣+ 2

∣∣∣∣ 5 6
1 7

∣∣∣∣] =

= (−1)[(−1)(3− 28)− 0 + 2(35− 6)] = −[25 + 58] = −83
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Question 7. Let A =

[
2 −1 5
3 7 −1

]
and B =

 −3 1
−2 0

5 2

.[9]

Comment: There was some confusion between “trace” tr(A) and “transpose” AT .
The trace of a square matrix is the sum of the diagonal entries. We have a theorem that

(as long as both products are defined) tr(AB) = tr(BA) .
For any m× n matrix A , AT is the n× n matrix defined by (AT )i,j = Aj,i .

(1) Find tr(AB).

Solution: AB =

[
2 · (−3) + (−1) · (−2) + 5 · 5 ∗

∗ 3 · 1 + 7 · 0 + (−1) · 2

]
=

[
21 ∗
∗ 1

]
,

where stars represent some numbers which we do not need for computing the trace.

Hence, tr(AB) = 21 + 1 = 22.

(2) Find tr(BA).

Solution:

Since we have a Theorem that for any matrices tr(BA) = tr(AB), we immediately
get that tr(BA) = 22.

Alternatively BA =

 (−3) · 2 + 1 · 3 ∗ ∗
∗ (−2) · (−1) + 0 · 7 ∗
∗ ∗ 5 · 5 + 2 · (−1)

 =

 −3 ∗ ∗
∗ 2 ∗
∗ ∗ 23

,

so tr(BA) = 22.

(3) Let C be a matrix such that AC BT is defined. What is the size of C?

Solution: In order for AC to be defined, the height of C has to be equal to the
width of A, which is 3. In order for C BT to be defined, the width of C has to be equal
to the height of BT , which is equal to the width of B, which is 3. Thus, C has to be a
3× 2 matrix.
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