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Abstract. We note that a strongly minimal Steiner k-Steiner system (M,R)
from [BP20] can be ‘coordinatized’ in the sense of [GW75] by a quasigroup

if k is a prime-power. But for the basic construction this coordinatization is
never definable in (M,R). Nevertheless, by refining the construction, if k is a

prime power there is a (2, k)-variety of quasigroups which is strongly minimal

and definably coordinatizes a Steiner k-system.

A linear space is collection of points and lines that satisfy a minimal condition to
call a structure a geometry: two points determine a line. A linear space is a Steiner
k-system if every line (block) has cardinality k. Such mathematicians as Steiner,
Bose, Skolem, Bruck have established deep connections between the existence of a
Steiner system with v points and blocks of size k and divisibility relations among
k and v.

A strongly minimal theory is a complete first order theory such that every defin-
able set is finite or cofinite. They are the building blocks of ℵ1-categorical theories.
Alternatively, in a strongly minimal theory T the model theoretic notion of alge-
braic closure1 determines a combinatorial geometry (matroid). Zilber conjectured
that these geometries were all discrete (acl(A) =

⋃
a∈A φ(x, a)), locally modular

(group-like) or field-like. The examples here are based on Hrushovki’s construction
refuting this conjecture [Hru93]. These counterexamples, with ‘flat2 geometries’
[Hru93, Section 4.2], have generally been regarded as an incohate class of exotic
structures. Indeed, a distinguishing characteristic is the inability to define an asso-
ciative operation.

It is easy to see that for any strongly minimal linear space there is a k such
all lines have length at most k. With Paolini [BP20], we varied the Hrushovski
construction to find strongly minimal k-Steiner systems for all k > 3, each line has
exactly k points.

We showed in Section 2 of [BP20]3 that linear spaces can be naturally formulated
in a one-sorted logic with single ternary ‘collinearity’ predicate and we proved:

Date: April 11, 2021.
1a ∈ acl(B) if for some φ(x,b) with b ∈ B, φ(a,b) and (∃<kxφ(x,b) for some k.
2The dimension of a closed subspace is determined from its own closed subspaces by the

inclusion-exclusion principle.[BP20, Definition 3.8].
3We use this paper as a common reference for many earlier results and definitions that are

scattered in the literature.
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Fact 0.1 ([BP20]). For each k, with 3 6 k < ω, there are 2ℵ0 strongly minimal
theories Tµ (depending4 on an integer valued function µ) of infinite linear spaces in
the one-sorted vocabulary τ whose models are Steiner k-systems.

These theories are model complete and satisfy the usual properties of counterex-
amples to Zilber’s trichotomy conjecture. Their acl-geometries are non-trivial, not
locally modular, and flat.

Much of the history of Steiner systems interacts with the general study of non-
associative algebraic systems such as quasigroups. A quasigroup is a structure with
a single binary operation whose multiplication table is a Latin Square (each row
or column is a permutation of the universe). Stein [Ste56] made deep connections
between Steiner k-systems and quasigroups. A line of work from the 1950-1980’s
including [Ste56, Grä63, GW75, Eva82] established that Steiner k-systems were
‘informally coordinatized’ by varieties of quasigroups if and only if k is a prime
power. We extend these results to infinite quasisgroups and Steiner system of every
cardinality with two contrasting results.

Theorem 0.2 ([BV20]). [Theorem 3.11] Let Tµ be a strongly minimal theory of
Steiner k-systems (M,R).

(1) If k is a prime power, M,R is definable in a model of a first order theory
Ťµ.

(2) Unless k = 3, the ‘coordinatizing quasigroup’ is not definable in (M,R).

Nevertheless when k = q is a prime power we can find strongly minimal Steiner
systems that are definable in strongly minimal quasigroups.

Theorem 0.3. (Theorem 4.3) For each q and each of the Tµ in Theorem 0.1
with line length k = q = pn and certain varieties of quasigroups V , there is a
strongly minimal theory of quasigroups Tµ′,V that defines a strongly minimal q-
Steiner system.

This result rests primarily on work of [GW75, Ste56, Ś61] and others who
achieved a ‘coordinatization’ of such Steiner systems by quasigroups. The con-
tribution here is that although, for k > 3, this coordinatization is not invertible,
the Steiner system never defines a quasigroup, we can in fact demand for k = q = pn

the existence of a Steiner k-system that is defined in a strongly minimal quasigroup.
The key to this is the relationship of so-called (2, k) varieties [Pad72, GW75, Qua92]
to a two-transitive finite structure and thus eventually to the reconstruction of a
finite (near)-field.

We discussed in the introduction and Remark 5.27 of [BP20] the connections
of this work with [BC1x, CK16, HP]. These works construct first order theories
of Steiner systems or projective planes that are at the other end of the stability
spectrum from those here. Evans [Eva04] uses the Hrushovski construction to
address combinatorial issues about Steiner systems.

This paper depends heavily on the results and notation of [BP20, BV20]. Certain
arguments will require consulting those papers. We acknowledge helpful discussions
with Joel Berman, Omer Mermelstein, Gianluca Paolini, and Viktor Verbovskiy.

4The theory of course depends on the line length k; but it is coded by µ so we suppress the k.
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1. Coordinatization

Descartes’s coordinatizaton identified addition and multiplication of line seg-
ments in a Euclidean plane as algebraic operations on what became over the next
300 years a (sub)field (which one depends on the geometric axioms) of the real
numbers. Hilbert, building on Von Staudt, and before the notions were formally
defined, established a bi-interpretation between an ordered field F where every
positive number has a square root and the Euclidean plane coordinatized by F .

Makowsky [Mak19] pointed out the subtleties of the coordinatization notion as a
property connecting theories. In particular he emphasized the necessity of establish-
ing the definability of the interpretation in each direction verifying the composition
is the identity. In the case at hand, there may be an informal coordinatization, but
the Decartes direction is never definable in the geometric language (for line length
> 4).

We contrast two notions.

Definition 1.1. (1) [GW75, GW80] A class of structures (specifically geome-
tries (M,R)) is coordinatizable if there is 1-1 correspondence between it
and a well-behaved class of algebras (specifically quasigroups (M, ∗)).

(2) The coordinatization is definable if there is first order formula in R that
defines ∗.

Ganter and Werner identify those classes of finite Steiner systems which are
coordinatizable as in Definition 1.1 by certain varieties of quasigroups. But, as
they are aware this identification is not unique; the same Steiner-system can be
coordinatized using the same method by different algebras (that are not even in
the same variety). Thus the theory of the Steiner system does not even predict the
equational theory of coordinatizing algebra and certainly does not control the first
order theory.

2. Background

We first give a quick survey of a set of notions from combinatorics and universal
algebra and then a short introduction to the Hrushovski construction. Then we
describe our notation.

A Steiner (t, k, v)-system is a pair (P,B) such that |P | = v, B is a collection of
k element subsets of P and every t element subset of P is contained in exactly one
block. Since we are primarily interested in interested infinite structures, we omit
the v unless it is crucial and so, by Steiner k-system I mean Steiner (2, k) system
of arbitrary cardinality. A groupoid5 (also called magma) is a structure (A, ∗) with
one binary function ∗.

A variety is a collection of algebras (structures in a vocabulary with only func-
tion/constant symbols and no relation symbols) that is defined by a family of equa-
tions. The essential characteristic of the equational theories below is that each
defining equation involves only two variables. In particular, none of the varieties
are associative.

5In category theory the term groupoid means all morphisms are invertible. Thus, it is more
analogous to our ‘quasigroup’. But most of the references for this paper use groupoid with no

explanation to mean binary function.
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Most of the current section6 is a series of definitions needed to apply the Hrushovski
construction as modified in [BP20]. The basic ideas of the Hrushovski construction
are i) to modify the Fräıssé approach by replacing substructure by a notion of strong
substructure, defined using a predimension δ (Definition 2.5) so that independence
with respect to the dimension induced by δ is a combinatorial geometry7 and ii)
to employ a function µ to bound the number 0-primitive extensions of each finite
structure so that closure in this geometry is algebraic closure.

We phrase our work in the generalization of the Fräıssé and Hrushovski con-
structions laid out in [KL92].

Notation 2.1. (1) A smooth class (L0,6) is a countable collection of finite
structures with a transitive relation on L0, strong substructure (6), refin-
ing substructure such that B 6 C implies B 6 C ′ if B ⊆ C ′ ⊆ C. However,
L0 need not be closed under substructure. If a smooth class satisfies amal-
gamation and joint embedding there is a countable generic model M , i.e. if
finite A,B are each strong in M , they are automorphic in M .

(2) Given a class of finite structures L0, L̂0 denotes the collection of structures
of direct limits of members of L0.

The next notation outlines the dependencies among the variations on the con-
struction that appear below.

Notation 2.2. A Hrushovski sm-class is determined by a quintuple (σ,L−1, ε, L0,U).
L−1 is a collection of finite structures in a vocabulary σ, not necessarily closed under
substructure. ε is a function from members of L−1 to natural numbers satisfying
the conditions imposed on δ in Definition 2.5. L0 is a subset of L−1 defined using
ε. From such an ε, one defines notions of 6, primitive extension, and good pair.
Hrushovski gave one technical condition on the function µ counting the number of
realizations of a good pair that ensured the theory is strongly minimal rather than
ω-stable of rank ω. Fixing a class U of functions µ satisfying that condition in the
base case and others for special purposes provides a way to index a rich group of
distinct constructions. At various times U is instantiated as U ,B, C, F or T . Thus
one obtains a strongly minimal theory Tµ and a generic structure Gµ.

In the specific developments in the paper L becomes K, ε becomes δ and a
various script letters are substituted for U to describe the counting function µ.

Notation 2.3. We work in a vocabulary τ with one ternary relation R, and assume
always that R can hold only of three distinct elements and then in any order (i.e.,
a 3-hypergraph). We say a maximal R-clique in a structure M is a line.

We use the words ‘block’ and ‘line’ interchangeably and often fail to distinguish
when the line has full length. A line is a maximal clique and we may write clique
to denote a subset of a line.

Definition 2.4. (1) K−1 is the collection of linear spaces, τ -structures such
that 2-points determine a unique line (maximal clique); we interpret R as
collinearity. By convention two unrelated elements constitute a trivial line.

6The two page Section 2.1 of [BP20] summarises the role of strongly minimal sets in model
theory and how strongly minimal Steiner systems arise.

7The requirement that the range of this function is well-ordered is essential to get the ex-
change property in the geometry; using rational or real coefficients yields a stable theory and the
dependence relation of forking [BS96].
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(2) For ` ⊆ A, we denote the cardinality of a clique ` by |`|, and, for B ⊆ A,
we denote by |`|B the cardinality of ` ∩B.

(3) We say that a non-trivial line ` contained in A is based in B ⊆ A if
|` ∩B| > 2, in this case we write ` ∈ L(B).

(4) The nullity of a line ` contained in a structure A ∈K−1 is:

nA(`) = |`| − 2.

Now we define our geometrically based pre-dimension function [Pao21].

Definition 2.5. (1) Recall K−1 is the collection of finite linear spaces. For
A ∈K−1 let:

δ(A) = |A| −
∑

`∈L(A)

nA(`).

(2) Let:

K0 = {A ∈K−1 such that for any A′ ⊆ A, δ(A′) > 0},

and (K0,6) be as in [BS96, Definition 3.11], i.e. we let A 6 B if and only
if:

A ⊆ B ∧ ∀X(A ⊆ X ⊆ B ⇒ δ(X) > δ(A)).

(3) We write A < B to mean that A 6 B and A is a proper subset of B.
(4) We say that B is a primitive extension of A if A 6 B and there is no B0

with A ( B0 ( B such that A 6 B0 6 B.

The remainder of this section is not needed until Section 4. The classK0 satisfies
amalgamation with the following construction.

Definition 2.6. [BP20, Lemma 3.14] Let A ∩ B = C with A,B,C ∈ K0. We
define D := A⊕C B as follows:

(1) the domain of D is A ∪B;
(2) a pair of points a ∈ A − C and b ∈ B − C are on a non-trivial line `′ in D if

and only if there is line ` based in C such that a ∈ ` (in A) and b ∈ ` (in B).
Thus `′ = ` (in D).

The following definition describes the pairs B ⊆ C such that eventually B/C
will be an algebraic set (realized only finitely often).

Definition 2.7. Let A,B ∈K0 with A ∩B = ∅ and A 6= ∅.
(1) When we have a pair A,C with A 6 C we often write Ĉ for C −A to simplify

notation.
(2) B is a primitive extension of A if A 6 B and there is no A ( B0 ( B such

that A 6 B0 6 B.
B is a k-primitive extension if, in addition, δ(B/A) = k.
We stress that in this definition, while B may be empty, A cannot be.

(3) We say that the 0-primitive pair A/B is good if there is no B′ ( B such that
(A/B′) is 0-primitive. (This notion was originally called a minimal simply
algebraic or m.s.a. extension.)

(4) If A is 0-primitive over B and B′ ⊆ B is such that we have that A/B′ is good,
then we say that B′ is a base for A (or sometimes for AB).

(5) If the pair A/B is good, then we also write (B,A) is a good pair.
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The following notation singles out the effect of the fact that our rank depends
on line length rather than the number of occurrences of a relation.

We single out a type of good pair that provides the invariant for the Steiner
systems. As noted in [BP20], Tµ is a Steiner k-system if µ(α) = k − 2.

Notation 2.8 (Line length). We write α for the isomorphism type the good pair
({b1, b2}, a) with R(b1, b2, a).

By Lemma 5.18 of [BP20], lines in models of Tµ have length k if and only if
µ(α) = k − 2.

Definition 2.9. Good pairs were defined in Definition 2.7.

(1) Let U be the collection of functions µ assigning to every isomorphism type β of
a good pair C/B in K0:

(i) a number µ(β) = µ(B,C) > δ(B), if |C −B| > 2;
(ii) a number µ(β) > 1, if β = α .

(2) For any good pair (B,C) with B ⊆ M and M ∈ K̂0, χM (B,C) denotes the
number of disjoint copies of C over B in M . Of course, χM (B,C) may be 0.

(3) Let Kµ be the class of structures M in K0 such that if (B,C) is a good pair
χM (B,C) 6 µ((B,C)).

(4) K̂µ is the class of direct limits of structures in Kµ.

Fact 2.10. [BP20] For each µ ∈ U , the class Kµ has amalgamation (and joint
embedding) so there is a countable generic model Gµ whose theory Tµ is a strongly
minimal Steiner system where k = µ(α) + 2.

3. Associating Strongly Minimal Steiner systems with Quasigroups

Following [GW75, GW80], we say a class of structures is coordinatizable if there
is 1-1 correspondence between it and a well-behaved class of algebras (3.9). We
explore around Fact 3.16 the connections between this notion and the concept of
an interpretation [Hod93].

Definition 3.1 ([Smi07]). A quasigroup8 (Q, ∗) is a groupoid9 (A, ∗) such that for
a, b ∈ Q, there exist unique elements x, y ∈ Q such that both

ax = b, ya = b.

the general notion is a universal Horn class, not a variety. See Definition 3.6 and
Remark 3.7.

We will discuss in detail three (families of) varieties (equational classes) of quasi-
groups.

Definition 3.2. [Smi07]

(1) A Steiner quasigroup a groupoid which satisfies the equations: x ◦ x =
x, x ◦ y = y ◦ x, x ◦ (x ◦ y) = y.

(2) A Stein quasigroup10 is a combinatorial quasigroup with the additional equa-
tions: x ∗ x = x, (x ∗ y) ∗ y = y ∗ x, (y ∗ x) ∗ y = x.

8Alias: multiplicative quasigroup [MMT87], combinatorial quasigroup [Smi07].
9In the background literature on quasigroups, a groupoid is simply a set with a binary operation.

So, I use this notation although it is no longer common.
10[RR10] points out that the term Stein quasigroup is used in two ways and refers to the usage

here as an S∗-quasigroup.
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(3) Given a (near)-field11 (F,+, ·,−, 0, 1) of cardinality q and a primitive ele-
ment a ∈ F , define a multiplication ∗ on F by x ∗ y = y + (x − y)a. An
algebra (A, ∗) satisfying the 2-variable identities of (F, ∗) is a block algebra
[GW80] over (F, ∗). Note (F, ∗) is idempotent.

While every group is an quasigroup, the Stein and Steiner quasigroup are rather
special quasigroups since they are idempotent. Thus, a Stein or Steiner quasigroup
(Q, ∗) cannot be a group unless it has only one element.

Steiner triple systems and Steiner quasigroups are actually interdefinable.

Fact 3.3. Each Steiner triple system is interdefinable with a Steiner quasigroup
(Definition 3.2).

Proof. Given the algebra, the blocks are the 2-generated subalgebras; given a
Steiner triple system, let x ◦ y be the third element of the block if x 6= y and
x ◦ x = x. Since all blocks are isomorphic to the unique 3 element Steiner quasi-
group, the resulting algebra is a Steiner quasigroup.

Corollary 3.4. There are 2ℵ0 strongly minimal theories Tµ of Steiner quasigroups
and so non-isomorphic Steiner triple systems of cardinality ℵ0.

Proof. We have an explicit 1-dimensional (the domain and range of the interpreta-
tion is the universe) bi-interpretation between Steiner triple systems and the Steiner
3-systems that were given by Theorem 0.1.

While these algebras are in the variety of Steiner triple system, for each µ we
have selected a single algebra in each uncountable cardinality. So we are distin-
guishing first order theories not varieties. The following example illustrates the
issue addressed in more generality and more detail in Fact 3.11.

Fact 3.5 (Stein quasigroups). [GW80, page 5] Each (2, 4)-Steiner system is coor-
dinatized by a Stein quasigroup,

Proof sketch: One direction is obvious; the blocks are the 2-generated subal-
gebras of the quasigroup. For the other direction, the universe of the algebra is
Q = P . For each block b ∈ B, fix a four element Stein quasigroup on B. We con-
sider two possibilities: A1 requires 0 ∗ 1 = 3 while A1 requires 0 ∗ 1 = 2. Regardless
of the choice of Ai, the entire structure is a Stein quasigroup. It clearly satisfies
the three equations of Definition 3.2.2 because they involve elements only within
a single block and also the requirement that each equation ax = b (ya = b) has a
unique solution, as again the solution is within the block determined by a, b.

Following [GW75, Pad72], we say

Definition 3.6. (1) The variety V is an (r, k)-variety if every r-generated sub-
algebra of any A ∈ V is isomorphic to the free V -algebra on r, Fr(V ) and
|Fr(V )| = k.

(2) A Mikado variety [GW75, 128] is (2, q)-variety with all fundamental oper-
ations binary and with an equational base of 2-variable equations.

11A near-field is an algebraic structure satisfying the axioms for a division ring, except that it

has only one of the two distributive laws. They were introduced by Dickson in 1905; we focus on
the field case. We have seen the term ‘block algebra’ only in [GW80], but it seems appropriate. I

see no relation with the notion of ‘block algebra’ arising from the blocks of a group representation.
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This is one of 5 equivalent characterizations of an (r, k) variety in [Pad72]. Obvi-
ously, the collection of r-generated subalgebras A ∈ V form an Steiner (r, k)-system;
we need a third: the automorphism group of any r generated algebra is strictly (i.e.
sharply) r-transitive.

Remark 3.7. In general a sub-quasigroup of an quasigroup (Q, ∗) need not be
a quasigroup. But if V (Q) (i.e. HSP(Q)) is an (r, k) variety, then every algebra
in V (Q) is a quasigroup [Qua92, Theorem 3]. So in this paper12 we can regard
quasigroups as structures with one binary operation.

We rely heavily on a ‘classical’ observation of Trevor Evans. It requires no proof,
but a little thought. Evans [Eva82] calls a variety V binary if both all function
symbols of V are binary and the defining equations involve only 2 variables.

Fact 3.8 ([Ste64, Eva76]). If V is a variety of binary, idempotent algebras and
each block of a Steiner system S admits an algebra from V then so does S.

In this context, Definition 1.1 becomes:

Definition 3.9. A variety (equational class) or more generally a first order theory
of algebras V coordinatizes a class S of (2, k)-Steiner systems if:

The universe M of each member (M,R) of S is the domain of an algebra (M, ∗)
in V and the lines are the 2-generated ∗-subalgebras.

If ∗ is definable from R, this is a definable coordinatization.

We sketch the proof the following old results to clarify the situation.

Fact 3.10. (1) [Ś61]The only (r, k) varieties are those where r = 0, k = 0;
r = k; r = 2, k = q = pn, for a prime p and a natural number n; r = 3,
k = 4.

(2) [GW75, GW80] For each q, the class of q-Steiner systems is coordinatized
by a (2, q)-variety of block algebras (Definition 3.2).

Proof sketch: Only Steiner (2, q)-systems with q = pn for some prime p, and
n > 1 are relevant here. It is easy to check that the block algebras defined in
Definition 3.2 are (2, k) algebras. But, if an algebra A is freely generated by every 2-
element subset, it is immediate that its automorphism group is strictly 2-transitive.
And as [Ś61] points out, an argument of Burnside [Bur97], [Rob82, Theorem 7.3.1]
shows this implies that |A| is a prime power.

Given the Steiner q-system we assign to each line a copy of the unique q element
algebra F2(V ). This gives an algebra in V by Fact 3.8 3.10

We easily see 1) of Theorem 3.11 from Facts 3.8 and 3.10.

Theorem 3.11. If Tµ is a strongly minimal Steiner k-system (from Fact 0.1) and
V is a Mikado (2, k) variety of quasigroups, then

(1) Each (M,R) |= Tµ is coordinatizable by an algebra (QM , ∗) in V .
(2) R(x, y, z) is definable in (QM , ∗) by the formula θF (x, y, z) that is the dis-

junction of the terms z = fi(x, y) where the fi(x, y) list the terms generating
F = F2(V ). Thus, (M,R) is definable in (QM , ∗).

12In general the variety generated by a quasigroup contains groupoids that are not quasigroups.
See [Qua92], [MMT87, page 126], [SR99, Example 2.2]. In the general situation, the requirement

that the binary relation has inverses must be enforced by binary left and ring division operators.
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(3) There is an (incomplete) first order theory Ťµ in the vocabulary {∗} such

that each model of Tµ is coordinatized by a model of Ťµ.
(4) If µ(α) = k > 1 this coordinatization is not definable in (M,R).

Proof. 1) is immediate from Fact 3.10. The statement of 2) defines the interpreta-
tion.

3) Let ∆F (x, y, f1(x, y), . . . fk(x, y)) denote the quantifier-free diagram of F . The
two-transivity of F guarantees the particular choice of the two elements x, y does
not matter. Ťµ is axiomatized by Eq(V )∪ {(∀x, y)∆F (x, y, f1(x, y), . . . fk(x, y))} ∪
{φ�(R/θF ) : φ ∈ Tµ}.

4) Without loss of generality, let (M,R) be the countable generic and suppose
it is coordinatized by (QM , ∗). Let {a, b} be a strong substructure of (M,R) (i.e.
d({a, b} = 2) and let c1, . . . ck fill out the line through a, b to a structure A. By
genericity there is a strong embedding of A into M .

Then all triples a, b, ci realize the same quantifier free R-type and A 6M implies
for any permutation ν of k fixing 0, 1, for 2 6 i < k, there is an automorphism of
(M,R) fixing a, b and taking ci to cν(i). Thus, a∗b cannot be definable in (M,R).

Despite Theorem 3.11.4, which shows there is no reason to think Th(QM, ∗) is
strongly minimal, we find strongly minimal theories of quasigroups in Section 4.

QUESTION 3.12. We have found a coordinatizing algebra QM for each model
M of Tµ. The construction depends on M and a particular free algebra F on two
generators. The choice of the block algebra variety in 1) is not unique. Ganter and
Werner [GW80, page 7] describe two different varieties of block algebras (one com-
mutative and one not) over F5, depending on the choice of the primitive element a of
F5 (Definition 3.2. Thus Ťµ is not complete. Our constructions (Theorem 4.3) show
there are continuum many first order theories of strongly minimal block algebras.

(1) Are all the (QM , ∗) (for the same F ) elementarily equivalent? in the same
(equationally complete?) variety?

(2) Do they represent continuum many distinct varieties? I.e, are the classes
HSP (Gµ) distinct for (sufficiently) distinct µ?

QUESTION 3.13. The use of the graph of the quasigroup in Construction 4.2
is similar to that in the study of model complete Steiner triple system of Barbina
and Casanovas [BC1x]. As noted in Remark 5.27 of [BP20], their generic structure
M differs radically from ours: aclM(X) = dclm(X).

Is it possible to develop a theory of q-block algebras for arbitrary prime powers
similar to that for Steiner quasigroups in their paper? That is, to find a model
completion for each of the various varieties of block algebras discussed in Defini-
tion 3.2.3?

Since Ťµ is not complete, so it can’t be interpreted in the complete theory Tµ.
But there is a much stronger reason for the failure to define ∗ in (M,R). But we
need some further hypotheses on µ.

Definition 3.14. We say f(x, y) is a non-trivial binary definable function if f is
definable by a formula φ(x, y, e) and for every a there exist b, b′ such that f(a, b) 6=
f(a, b′) (and similarly reversing the variables).

The class T of admissible µ-functions in [BV20] ensures that there are no non-
trivial binary (indeed n-ary) functions.
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Definition 3.15. Let K−1 be the class of finite linear spaces as in Definition 2.3.
Recall from [BP20] that we allowed µ(α) = 1 to accommodate Steiner triple systems.
We say that the function µ from good pairs into ω satisfies

(1) µ ∈ U if the standard Hrushovski condition is met: µ(A/B) > δ(B).
(2) µ triples (µ ∈ T ) if for µ(A/B) > 3 unless δ(B) = 1 or B is an independent

pair.

With Verbovskiy we introduced the notion of a decomposition of finite G-normal
subsets of Hrushovski strongly minimal sets with respect to automorphism groups
to prove:

Fact 3.16. [[BV20]] For any strongly minimal Steiner system (M,R)

(1) If µ ∈ T (µ-triples) there is no definable non-trivial n-ary function definable
in (M,R) and so does not have elimination of imaginaries.

(2) If C ∩ T then for every finite A, dcl(A) = A but (with minor further re-
striction13) on µ), for every finite A |acl(A)| = ℵ0.

(3) If µ ∈ U Tµ does not admit elimination of imaginaries. Tentative April 1,
2021: last steps remain to be checked.

Fact 3.16.3 is proved for the basic Hrushovski construction in [BV20]. The crucial
distinction between 1) and 2) in Fact 3.16 is that 2) there may be definable binary
functions but they cannot be commutative.

In [Bal20] we investigate various combinatorial problems about the classes of
quasivarieties constructed here. In particular, we find strongly minimal Steiner
triple systems of every infinite cardinality that are two-transitive, so with uniform
cycle graphs [CW12], and further that are ∞-sparse in the sense of [CGGW10].

We now show the versatility of the method of construction by finding Steiner
systems which both do and don’t admit definable unary functions.

Lemma 3.17. If µ ∈ U and µ(α) > 2, i.e. lines have length at least 4, there is a
12-element structure A that is 0-primitive over a singleton a. If µ(A) = 1, then Tµ
admits a non-trivial definable unary function.

Proof. Let ε be the isomorphism type of the pair ({a}, {b, c} ∪ {di : 1 6 i 6 9})
where R holds of a, b, c, ad2i+1d2i+2 (for 0 6 i 6 3) bd2i+2d2i+3 (for 0 6 i 6 2),
b, d8, d1, and finally each triple from {c, d8, d9, d4}. There are 12 points, nine 3-
point line segments and one with 4 points so A denotes the entire structure δ(A) =
12− (9 + 2) = 1. By inspection, each proper substructure A′ has δ(A′) > 2 so A is
1-primitive over {a}. But d9 is the unique point that is in exactly one clique within
A. Thus, if µ(ε) = 1, the formula (∃x1, x2y1, . . . y8)∆(x0, x1, x2y1, . . . y8, y9) (where
∆ is the quantifier free diagram of A) defines d9 over a in any model of Tµ.

While we have given only one example, one can extend the length of the cycle
and get infinitely many examples. Note that the construction in Lemma 3.17 is
iterable so the definable closure may not be locally finite.

Suppose, however that µ(ε) > 2. Then if {a} 6 M , by [BP20, Corollary 5.16],
there are 2 realizations of A over {a} and so d9 ∈ acl({a} − dcl({a}. Moreover, if
{a} 
M then d9 ∈ acl(∅).

13E.g. If the unique 7 element (Fano) plane is in U then acl(∅) is infinite.
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Recall U is the set of µ such that for any good pair B/A, µ(B/A) > δ(B/A).
While the construction with admissible U does not imply trivial unary closure, we
can obtain triviality by changing the class U of admissible µ.

Definition 3.18. Define C by restricting U by requiring that if |A| = 1 and some
point in B is determined by A (such as γ in Lemma 3.17), then µ(B/A) = 1.

We used the cycle graphs of [CW12] to prove in [BP20, 4.11] that there are
2ℵ0 distinct strongly minimal Steiner systems Tµ; this proof remains valid if µ
is restricted to C or even C ∩ T . Clearly amalgamation can not introduce unary
functions so we have:

Proposition 3.19. If µ ∈ C, and M is the generic for Kµ, for any a ∈ M ,
dcl(a) = {a}.

4. Constructing strongly minimal quasigroups

We have shown that in general the strongly minimal Steiner k-systems for k > 3
do not definition a quasigroup. Nevertheless, definition in the other direction may
hold. We will show each for k = q = pn, there are strongly minimal Steiner systems
that are definable in a strongly minimal quasigroup. Thus in a round-about-fashion
we arrive at strongly minimal block algebras, that are in (2, q) varieties and deter-
mine Steiner q-systems.

We will obtain this result by jointly constructing a Steiner system (M,R) and a
multiplication ∗, requiring that the ∗-algebra be in a given (2, q)-variety V (Defini-
tion 3.6) that coordinatizes (M,R).

Definition 4.1. Fix µ ∈ U with µ(α) = q−2 and a (2, q)-variety V of quasigroups.

(1) Let the class Kq
µ be the finite τ -structures A such that each maximal clique

has q-elements. This is expressed by ∀∃ τ -sentence.
(2) Expand τ to τ ′ by adding a ternary symbol H. Let K ′µ (= K ′µ′,V ) be the

finite τ ′- strucures A′ such that A′�τ ∈Kq
µ′ and A′�H is the graph of F2(V )

on each line.
(3) Let (A/B) be a good pair for Kq

µ with isomorphism type γ. Let γ′ be the
isomorphism type of the image of (A/B) in the τ ′-structure constructed in
the previous paragraph14.

(4) Note µ′(α′) must be 1, when the τ -reduct is a line of length k, over a two-
point base, since two points determine a line. For any other isomorphism
type of a good pair with γ = γ′�τ , let µ′(γ′) = µ(γ).

For each prime power q > 4, we show that the class of finite linear spaces such
that each maximal non-trivial (at least three elements) clique has size q and a block
algebra is defined on each such clique has the amalgamation property. There is no
need for this construction when q = 3.

Construction 4.2. For q > 3 a prime power, fix µ with µ(α) = q − 2 and V as
Definition 4.1. We transform an A ∈Kq

µ to an A′ ∈K ′µ. First, there is a canonical

extension of A to Ǎ ∈Kq
µ. Namely extend each clique of length at least 3 in A to

have length q; but with no new intersections. Now expand Ǎ to a τ ′-structure by
imposing on each line ` a copy of F2(V ) with graph H � `. Call this expansion A′.

14This image will be a substructure of a structure in K′µ but rarely itself a member of K′µ.
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We have in fact defined a finite family of possible expansions of A (depending on
the interaction of H and R). The set of possible expansions of each A ∈ Kµ as A
varies through Kq

µ is denoted K ′µ,V .
For any such A′, let δ′(A′) = δ(A′�τ) = δ(A). Note that each non-trivial line

in A′ has q elements. We denote by α′ the isomorphism type (a1, a2, b1 . . . bk−2) of
full line over two points; it is good with respect to K ′µ,V . (At various places in the
definitions we must replace ‘substructure’ by ‘substructure in Kq

µ.) This will not
disturb the value of δ because δ of any line segment is 2.

Note that, except for α′, each good pair γ = A/B in Kµ has generated a finite
number of distinct good pairs in K ′µ. As, the various copies have the same reduct
to τ but differ in their quasigroup structure. With this framework in hand we can
complete the proof of Theorem 4.3. We show how to vary the proofs of the crucial
results 5.11 and 5.15 from [BP20] for this result.

Theorem 4.3. For each q and each µ ∈ U each of the Tµ in Theorem 0.1 with line
length k = q = pn (for some n) and certain varieties (block algebras) of quasigroups
V , there is a strongly minimal theory of quasigroups Tµ′,V that defines a strongly
minimal q-Steiner system.

Proof. We can construct a generic, provided we prove amalgamation for K ′µ,V . We
now show that the amalgamation for the τ -class, as in Lemma 5.11 and Lemma
5.15 of [BP20] yields an amalgamation for τ ′. Consider a triple D′, E′, F ′ in K ′µ,V
as in Lemma 5.15 of the earlier paper. That is, D′ ⊆ F and E′ is 0-primitive
over D′. Since E′ is primitive over D′, although there may be a line contained in
the disjoint amalgam G′ with two points in each of D and F − D, each line that
contains 2 points in E−D can contain at most one from D. Thus, there is no issue
with defining the relation H on the disjoint amalgamation. If µ′ requires some
identification for some (B′, C ′), just as in the original, it is because the (relational)
τ ′-structure B′C ′ is D′E′ and (Note the ‘further’ in [BP20, Lemma 5.10].) there
is a copy of E′ over B′ in F ′. Now the strong minimality of the generic follows
exactly as in Lemmas 5.21 and 5.23 of [BP20] and we have proved Theorem 4.3.

Notation 4.4. For each µ ∈ U with µ(α) = q − 2, and each (2, q)-variety V ,
we denote by G′µ′,V the strongly minimal τ ′ generic structure constructed in Theo-

rem 4.3. Its reduct to {H} is a strongly minimal block algebra. The theory of that
reduct is essentially Tµ′,V since R is definable in that reduct by R(u, v, w) if and
only

∨
σ(u,v)H(u, v, σ(u, v)), where is σ(u, v) is an existential formula formed by

translating a term in F2(V ) into a relational formula).

QUESTION 4.5. Necessarily in the construction given, a τ good pair (B,C) in
the reduct of a model of Tµ′,V will have many (but finitely) more copies of C over
B than µ(B,C). Thus, Tµ′,V � τ is not Tµ.

Is it possible to characterize those µ such that Tµ can be interpreted in a quasi-
group? We guaranteed that each 2-generated subalgebra is F2(V ) and V is a Mikado
variety (in particular, determined by 2-variable equations, each quasi-group QM is
in V . This is enough to show the full structure is a quasigroup. But different
varieties of quasigroups may have the same free algebra on two generators. Con-
struction 4.2 depends on both the original Kq

µ and F2(V ). How many varieties
can arise from the same F2(V )? There are two variants on this question. One is,
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‘how many varieties of quasigroup can have the same free algebra on two genera-
tors?’. The second asks only of varieties V (Q,H) that arise from a theory Tµ as in
Construction 4.2.

What varieties do the Gµ′,V generate? Immediately from known results each such
variety satisfies strong properties.

Corollary 4.6. For each Tµ′,V with prime power line length, any M |= Tµ, the
reduct to ∗ is in a variety (that is congruence permutable, regular and uniform
[Qua76, Theorem 3.1] or [GW75, Corollary 2.4] but not residually small [BM88,
Corollary 8].

QUESTION 4.7. Every finite algebra in a (2, q) has a finite decomposition into
directly irreducible algebras ([GW75, Corollary 2.4]. Are there any similar results
for infinite strongly minimal block algebras?
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