THERE ARE JUST TWO POSITIVE UNIVERSAL CLASSES OF TOTALLY ORDERED ABELIAN GROUPS

BOB QUACKENBUSH

ABSTRACT. A lattice ordered abelian group (or abelian ℓ -group) is an algebra $\mathbf{G} = (G; \wedge, \vee, +, -, 0)$ such that:

- (a) $(G; \land, \lor)$ is a (necessarily distributive) lattice with ordering denoted \leq ,
 - (b) (G; +, -, 0) is an abelian group,
- (c) $(x \wedge y) + z \leq y + z$ (that is, addition is order preserving).

G is a *t-group* if it satisfies the positive universal sentence:

$$(x \le y)$$
 OR $(y \le x)$.

It is a classical result that every lattice ordered abelian group is a subdirect product of abelian t-groups.

The two positive universal classes of abelian t-groups are the trivial class of 1-element t-groups, axiomatized by x=y, and the class of all abelian t-groups. I will present a proof of this.