EQUIVARIANT PROJECTION MORPHISMS OF SPECHT MODULES

TAGREED MOHAMMED

Let *d* be a positive integer, and let \mathfrak{S}_d denote the symmetric group on *d* letters. Given a partition λ of *d*, the Specht module V_{λ} is a finite dimensional vector space over \mathbb{C} which admits a natural basis indexed by all standard tableaux of shape λ with entries in $\{1, 2, \ldots, d\}$. It affords an irreducible representation of the symmetric group \mathfrak{S}_d , and conversely every irreducible representation of \mathfrak{S}_d is isomorphic to V_{λ} for some partition λ .

Given two Specht modules V_{λ} , V_{μ} , their tensor product representation $V_{\lambda} \otimes V_{\mu}$ is in general reducible, and hence it splits into a direct sum $\bigoplus_{\nu} V_{\nu}^{m_{\nu}}$ of irreducibles. This raises the problem of describing the \mathfrak{S}_d -equivariant projection morphisms (alternately called \mathfrak{S}_d -homomorphisms) of the form $V_{\lambda} \otimes V_{\mu} \longrightarrow V_{\nu}$ in terms of the standard tableaux bases. In this work we give explicit formulae describing this morphism in the following cases:

•
$$V_{(d-1,1)} \otimes V_{(d-1,1)} \longrightarrow V_{(d-1,1)}$$
,

• $V_{(1^d)} \otimes V_{\lambda} \longrightarrow V_{\tilde{\lambda}}$, where $\lambda = (d-1,1)$ or $(2,1^{d-2})$ and $\tilde{\lambda}$ is its conjugate.

The isomorphism $V_{\lambda} \simeq V_{\lambda}^*$ induces an equivariant projection morphism (which we call a q-morphism)

$$V_{\lambda} \otimes V_{\lambda} \longrightarrow V_{(d)} \cong \mathbb{C}.$$

We have found explicit formulae for this morphism in the following cases:

$$\lambda = (d - 1, 1), \ (d - 2, 1, 1), \ (2, 1, \dots, 1).$$

Finally, we present a conjectural formula for the q-morphism in the case

$$\lambda = (d - r, 1, \dots, 1).$$