EQUIVARIANT PROJECTION MORPHISMS OF SPECHT MODULES

TAGREED MOHAMMED

Let d be a positive integer, and let \mathfrak{S}_{d} denote the symmetric group on d letters. Given a partition λ of d, the Specht module V_{λ} is a finite dimensional vector space over \mathbb{C} which admits a natural basis indexed by all standard tableaux of shape λ with entries in $\{1,2, \ldots, d\}$. It affords an irreducible representation of the symmetric group \mathfrak{S}_{d}, and conversely every irreducible representation of \mathfrak{S}_{d} is isomorphic to V_{λ} for some partition λ.

Given two Specht modules V_{λ}, V_{μ}, their tensor product representation $V_{\lambda} \otimes V_{\mu}$ is in general reducible, and hence it splits into a direct sum $\bigoplus V_{\nu}^{m_{\nu}}$ of irreducibles. This raises the problem of describing the \mathfrak{S}_{d}-equivariant projection morphisms (alternately called \mathfrak{S}_{d}-homomorphisms) of the form $V_{\lambda} \otimes V_{\mu} \longrightarrow V_{\nu}$ in terms of the standard tableaux bases. In this work we give explicit formulae describing this morphism in the following cases:

- $V_{(d-1,1)} \otimes V_{(d-1,1)} \longrightarrow V_{(d-1,1)}$,
- $V_{\left(1^{d}\right)} \otimes V_{\lambda} \longrightarrow V_{\tilde{\lambda}}$, where $\lambda=(d-1,1)$ or $\left(2,1^{d-2}\right)$ and $\tilde{\lambda}$ is its conjugate.

The isomorphism $V_{\lambda} \simeq V_{\lambda}^{*}$ induces an equivariant projection morphism (which we call a q-morphism)

$$
V_{\lambda} \otimes V_{\lambda} \longrightarrow V_{(d)} \cong \mathbb{C} .
$$

We have found explicit formulae for this morphism in the following cases:

$$
\lambda=(d-1,1),(d-2,1,1),(2,1, \ldots, 1)
$$

Finally, we present a conjectural formula for the q-morphism in the case

$$
\lambda=(d-r, 1, \ldots, 1) .
$$

