Locally projective modules, Zimmermann-Huisgen's 'Property (A)', and the elementary dual

T. G. Kucera¹ Ph. Rothmaler²

¹Department of Mathematics, University of Manitoba Winnipeg, Manitoba, Canada R3T 2N2

²Bronx Community College, City University of New York New York, NY USA

Rings and Modules Seminar, Fall 2020

Preliminaries

Definition

A module _RP is locally projective iff all diagrams

with the top row exact and *F* finitely generated, can be completed as shown, so that fg'i = fg.

A characterization of projectivity

The following are equivalent:

- *RP* is projective;
- ${}^{\textcircled{O}}_{R}P$ is a direct summand of a free left *R*-module;

Oual Basis Theorem:

There are elements $\langle p_i \rangle_{i \in I}$ and homomorphisms $\langle f_i \rangle_{i \in I}$, $f_i : P \to R$, such that for every $p \in P$,

• $f_i(p) = 0$ for almost all $i \in I$;

$$p = \sum_{i \in I} f_i(p) p_i.$$

Characterizations of flatness

The following are equivalent:

- *RF* is flat;
- 2 The functor $\underline{\quad} \otimes F : \text{Mod-} R \rightarrow \text{Ab}$ is exact;
- So For every finite $\mathbf{r} \in R$ and corresponding $\mathbf{x} \in F$ such that $\mathbf{r} \cdot \mathbf{x} = 0$, there is a (finite) matrix A over R and tuple $\mathbf{y} \in F$ such that $\mathbf{r}A = 0$ and $A\mathbf{y} = \mathbf{x}$.
- (Rothmaler) For every left pp formula $\varphi(\mathbf{x})$, $\varphi[F] = \varphi[_R R] F$.

Free implies Projective implies Flat

Let *I* and *J* be non-empty sets; generally treated as index sets with no other implied structure.

An $I \times J$ matrix over R is a function $A : I \times J \rightarrow R$.

For each $i \in I$, the restriction $_iA$ of A to $\{i\} \times J$ is called a *row* of A. Similarly we define the *columns* of A.

A is *row finite* if every row of *A* is 0 almost everywhere. Similarly, *column finite*.

Similarly, row or column vectors of elements of R, of variables, of some R-module M.

 $_{I}A^{J}$ is an $I \times J$ matrix.

Two matrices of the same shape may be multiplied by a scalar (element of R) or added, to yield a matrix of the same shape.

An infinite sum almost all of whose terms are 0 is treated as well-defined.

Two matrices ${}_{I}A^{J}$ and ${}_{J}B^{K}$ are *compatible for multiplication* if *A* is row finite or if *B* is column finite, or if more generally, for each $i \in I$ and each $k \in K$, $a_{ij}b_{jk} = 0$ for almost all $j \in J$; in which case we use the usual definition of matrix multiplication.

Let *A* be a row-finite $I \times J$ matrix over *R*, **x** a $J \times 1$ matrix (column vector) of *variables*, and **b** an $I \times 1$ column vector of elements from an *R*-module _{*R*}*M*.

$A\mathbf{x} = \mathbf{b}$

is a system of linear equations in \mathbf{x} over M.

A solution $A\mathbf{x} = \mathbf{b}$ is some \mathbf{n} , a $J \times 1$ column vector in some module ${}_{R}N \ge {}_{R}M$, such that in N, $A\mathbf{n} = \mathbf{b}$.

A system of linear equations over M is *solvable* ("semantically consistent") if it has a solution in some extension of M,.

[First year linear algebra]

 $A\mathbf{x} = \mathbf{b}$ is formally (syntactically) consistent if for all $_1\mathbf{r}^I$ over R which are 0 almost everywhere, $\mathbf{r}A = \mathbf{0}$ implies $\mathbf{r}\mathbf{b} = 0$.

Amongst the many characterizations of injectivity:

Key point in the proof: using a system of equations to construct a homomorphism.

Lecture 2

... I don't know my left hand from my right hand

Reference

Birge Zimmermann-Huisgen, *Pure Submodules of direct products of free modules*, **Math. Ann. 224**, 233–245 (1976).

Property (A)

Let P_R be a right *R*-module.

(A) For all column-finite matrices ${}_{I}A^{J}$ over R and all I-rows $\mathbf{m} \in P$ such that $\mathbf{m}A = 0$, and all finite $I' \subset I$,

there is a finite *k*-row $\mathbf{x} \in P$ and a matrix ${}_{k}B^{l}$ over *R* such that

BA = 0 and $\mathbf{m}^{l'} = \mathbf{x}B^{l'}$.

Characterizations of flatness

The following are equivalent:

Por every finite r ∈ R and corresponding x ∈ F such that xr = 0, there is a (finite) matrix A over R and tuple y ∈ F such that Ar = 0 and yA = x.

Definition

A module _RP is locally projective iff all diagrams

with the top row exact and *F* finitely generated, can be completed as shown, so that fg'i = gi.

Theorem (B. Zimmermann-Huisgen)

The following are equivalent for a module P_R :

- P is locally projective;
- P has Property (A);
- So For each element $m \in P$, there are $x_1, \ldots x_n \in P$ and homomorphisms $f_1, \ldots, f_n : P \to R_R$ such that $m = \sum_j x_j f_j(m)$;
- For each finite number of elements $m_1, \ldots, m_k \in P$, there are $x_1, \ldots, x_n \in P$ and homomorphisms $f_1, \ldots, f_n : P \to R_R$ such that for each $i, 1 \le i \le k$,

$$m_i=\sum_j x_j f_j(m_i)$$
.

As stated, Property (A) has quantifiers scattered in leading and trailing positions....

Property (A), restated

 P_R has property (A) iff for all index sets *I* and *J*, for all $_{(I)}A^J$ over *R*, for all $\mathbf{m}^I \in P$, for all finite $I' \ll I$,

there are finite K, $\mathbf{x}^{K} \in P$, $_{K}B^{I}$ over R,

such that BA = O and $\mathbf{m}^{l'} = \mathbf{x}B^{l'}$.

Property (A), restated one more time

 P_R has property (A) iff For all index sets *I* and *J* and all matrices ${}_{(I)}A^J$ over *R*, P_R satisfies the following property $({}_{(I)}A^J)$:

$$\left({}_{(I)} \mathcal{A}^J \right)$$

$$orall {f m}^{\prime} \in {m P}$$
 , for all ${\it I}^{\prime} \ll {\it I}$,

there are finite *K*, $\mathbf{x}^{K} \in P$, $_{K}B^{I}$ over *R* with BA = O such that $\mathbf{m}^{I'} = \mathbf{x}B^{I'}$.

Tidying up 'Property (A)': $(I)A^{J}$

Expressing $(I_{(I)}A^{J})$ as an infinitary implication

- $({}_{(I)}A^J)$ is a property $Q(\overline{\nu})$ with variables $\overline{\nu}$ indexed by *I* of *I*-tuples $\mathbf{m} \in P$;
- If or all I' << I" is a conjunction of properties indexed by the finite subsets of I,</p>
- the existential quantifiers can be written as disjunctions over certain index sets;
- In particular, the rows of *B* all must be elements of the *left* annihilator \mathcal{B} of *A*:

$$\mathcal{B} = \left\{ \mathbf{b}^{\mathsf{I}} : \mathbf{b}A = \mathcal{O}
ight\}$$

Tidying up 'Property (A)': $(I)A^{J}$ (continued)

$$\left({}_{(I)}\mathcal{A}^{J}\right): \qquad \forall \overline{\nu}^{I} \left[\overline{\nu}\mathcal{A} = \mathcal{O} \longrightarrow \bigwedge_{I' \ll I} \bigvee_{k \in \omega} \bigvee_{\overline{x}^{k} \in \mathcal{P}} \bigvee_{k B^{I} \in \mathcal{B}} (\overline{\nu}^{I'} = \overline{x}B^{I'})\right]$$

The order of the disjunctions doesn't matter, so " $\bigvee_{\overline{x}^k \in P}$ " can return to an existential quantifier, and the other pair of disjunctions indexes a family closed upwards under sums, so we get:

$$\left({}_{(l)}\mathcal{A}^{J}\right): \qquad \forall \overline{\mathbf{v}}^{l} \left[\overline{\mathbf{v}}\mathcal{A} = \mathcal{O} \longrightarrow \bigwedge_{l' \ll l_{k}\mathcal{B}^{l} \in \mathcal{B}} \exists \overline{\mathbf{x}}^{k} (\overline{\mathbf{v}}^{l'} = \overline{\mathbf{x}}\mathcal{B}^{l'})\right]$$

This is the universal closure of an implication between two generalized infinitary positive primitive formulas in the sense of my current work with Rothmaler; and falls into the form of a sentence which has an elementary dual.

Kucera, Rothmaler (UofM, CUNY)

a bunch of general stuff about elementary duality.... October 20, 2020

Recall Elementary Duality (very informal summary)

- Elementary duality is a lattice anti-isomorphism between the lattice of pp formulas in the language of left *R*-modules and the lattice of pp-formulas in the language of right *R*-modules (up to logical equivalence).
- Elementary duality provides a categorical equivalence at the level of Shelah's "Imaginary Universe" between the category of left *R*-modules and the category of right *R*-modules.
- As a consequence of the pp-elimination of quantifiers for modules, a natural way of axiomatizing theories of modules (complete or otherwise) is by families of pp-implications: the universal closures of formulas of the form $\varphi \rightarrow \psi$, where φ and ψ are pp formulas.
- The elementary dual theory is axiomatized by the implications $\mathrm{D}\psi\to\mathrm{D}\varphi$.

Fix an index set *I* for the (free) variables of infinitary pp formulas. In this context it is intended that *I* be an infinite set.

• There are two ways of expanding a finitary pp-formula $\varphi(\overline{x})$ to an $\mathit{I}\text{-formula:}$

Finitary pp formulas are closed under conjunction and sum in a natural way; infinitary analogues are only closed under conjunction "naturally", so we introduce a new infinitary operator Σ with semantics M ⊨ Σ_{j∈J}φ_j[ā] (where the φ_j are infinitary pp formulas) iff ā ∈ Σ_{j∈J}φ_j[M], the sum in the sense of sum of subgroups.

Generalizations to the context of *I*-properties of results of Prest, Rothmaler and Ziegler.

Theorem (Kucera-Rothmaler)

• A property *P* of *I*-tuples in a module *M* is dualizable iff it can be defined by an infinitary pp-formula of the form $\bigwedge_J \sum_{K_j} \varphi_{jk}^{\mathsf{E}}$ where each φ_{jk} is an ordinary finitary pp formula in some variables indexed from *I*.

2 A property *P* of *I*-tuples in a module *M* which are zero almost everywhere is dualizable iff it can be defined by an infinitary pp-formula of the form $\bigwedge_J \sum_{K_j} \varphi_{jk}^{\Omega}$ where each φ_{jk} is an ordinary finitary pp formula in some variables indexed from *I*. Generalizations to the context of *I*-properties of results of Prest, Rothmaler and Ziegler. Formulas as on the previous slide.

Theorem (Kucera-Rothmaler)

Let \mathcal{F} be the set of all choice functions on $\{K_j : j \in J\}$. **1** $D(\bigwedge_J \sum_{K_j} \varphi_{jk}^{\mathsf{E}}) = \sum_J \bigwedge_{K_j} (\mathsf{D}\varphi_{jk})^{\Omega} = \bigwedge_{f \in \mathcal{F}} \sum_{j \in J} (\mathsf{D}\varphi_{j,f(j)})^{\Omega}$. **2** $D(\bigwedge_J \sum_{K_j} \varphi_{jk}^{\Omega}) = \sum_J \bigwedge_{K_j} (\mathsf{D}\varphi_{jk})^{\mathsf{E}} = \bigwedge_{f \in \mathcal{F}} \sum_{j \in J} (\mathsf{D}\varphi_{j,f(j)})^{\mathsf{E}}$ P_R has property (A) iff for all index sets *I* and *J* and all matrices (*I*) A^J over *R*,

$$\left({}_{(I)}A^{J}\right): \qquad \forall \overline{v}^{I} \left[\overline{v}A = \mathcal{O} \longrightarrow \bigwedge_{I' \ll I} \sum_{kB^{I} \in \mathcal{B}} \exists \overline{x}^{k} (\overline{v}^{I'} = \overline{x}B^{I'}) \right]$$

•
$$\overline{\nu}A = \mathcal{O}$$
 is equivalent to $\bigwedge_{j \in J} \overline{\nu}A^j = 0$.

Since *A* is column finite, $\overline{v}A^{j}$ is just an ordinary finite linear combination, which makes no assertion about the value of any v_i , *i* not in the support of $A^{j} = I_{j} \ll I$.

- $\overline{v}A^{j} = 0$ is thus essentially $((\overline{v}^{l_{j}})(_{l_{j}}A^{j}) = 0)^{\mathsf{E}}$.
- The dual of this formula is $[\exists w(_{I_j}\overline{v} = _{I_j}A^jw)]^{\Omega}$.
- The dual of $\overline{v}A = \mathcal{O}$ is

$$\sum_{j\in J} \exists w (\overline{v} = A^j w)$$

• The solution set in a left module *N* (that is, as a subset of *N*^(*l*)) is $AN^{(J)}$.

Dual of $\bigwedge_{l'\ll l} \sum_{kB'\in\mathcal{B}} \exists \overline{x}^k (\overline{v}^{l'} = \overline{x}B^{l'})$

- $\exists \overline{x}^k (\overline{v}^{l'} = \overline{x}B^{l'})$ is understood as $[\exists \overline{x}^k (\overline{v}^{l'} = \overline{x}B^{l'})]^{\mathsf{E}}$.
- This has dual $[{}_{k}B'' {}_{l'}\overline{v} = 0]^{\Omega}$

Dual of $\bigwedge_{l'\ll l} \sum_{kB'\in \mathcal{B}} \exists \overline{x}^k (\overline{v}^{l'} = \overline{x}B^{l'})$

- $\exists \overline{x}^k (\overline{v}^{l'} = \overline{x}B^{l'})$ is understood as $[\exists \overline{x}^k (\overline{v}^{l'} = \overline{x}B^{l'})]^{\mathsf{E}}$.
- This has dual $[{}_{k}B'' {}_{l'}\overline{v} = 0]^{\Omega}$
- The dual of the whole formula is then $\sum_{l'\ll l} \bigwedge_{kB'\in\mathcal{B}} [{}_{k}B''{}_{l'}\overline{v} = 0]^{\Omega}$

Dual of $\bigwedge_{l'\ll l} \sum_{kB'\in \mathcal{B}} \exists \overline{x}^k (\overline{v}^{l'} = \overline{x}B^{l'})$

- $\exists \overline{x}^k (\overline{v}^{l'} = \overline{x}B^{l'})$ is understood as $[\exists \overline{x}^k (\overline{v}^{l'} = \overline{x}B^{l'})]^{\mathsf{E}}$.
- This has dual $[{}_{k}B'' {}_{l'}\overline{v} = 0]^{\Omega}$
- The dual of the whole formula is then $\sum_{l'\ll l} \bigwedge_{kB'\in\mathcal{B}} [{}_{k}B''{}_{l'}\overline{v} = 0]^{\Omega}$
- The conjunction can be evaluated "one row at a time" so is equivalent to $\bigwedge_{\left\{ \ 1\overline{b}':\ \overline{b}A=0 \right\}} (\overline{b}^{I'}{}_{I'}\overline{v}=0)^{\Omega}$

Dual of $\bigwedge_{l'\ll l} \sum_{kB'\in\mathcal{B}} \exists \overline{x}^k (\overline{v}^{l'} = \overline{x}B^{l'})$

- $\exists \overline{x}^k (\overline{v}^{l'} = \overline{x}B^{l'})$ is understood as $[\exists \overline{x}^k (\overline{v}^{l'} = \overline{x}B^{l'})]^{\mathsf{E}}$.
- This has dual $[{}_{k}B'' {}_{l'}\overline{v} = 0]^{\Omega}$
- The dual of the whole formula is then $\sum_{l'\ll l} \bigwedge_{kB'\in \mathcal{B}} [{}_{k}B''{}_{l'}\overline{v} = 0]^{\Omega}$
- The conjunction can be evaluated "one row at a time" so is equivalent to $\bigwedge_{\left\{ \ 1\overline{b}':\ \overline{b}A=0 \right\}} (\overline{b}^{I'}{}_{I'}\overline{v}=0)^{\Omega}$
- Then, taking the sum over all finite subsets of *I*, and noting that $\mathcal{B}_{,,}$ the left annihilator of *A*, can be re-interpreted as a giant *I*-columned matrix:
- the dual statement simplifies to $\mathcal{B}\overline{v} = \mathcal{O}$ with \overline{v} restricted to taking on values which are 0 almost everywhere.

For all column finite ${}_{I}A^{J}$ over R, and \mathcal{B} the left annihilator subspace of A, interpreted as an $L \times I$ matrix for some index set L,

$$\mathcal{B}\overline{v} = 0 \implies \exists \overline{w} A \overline{w} = \overline{v}$$

where the vectors of variables have shapes ${}_{(I)}\overline{v}^1$ and ${}_{(J)}\overline{w}^1$.

For all column finite ${}_{I}A^{J}$ over R, and \mathcal{B} the left annihilator subspace of A, interpreted as an $L \times I$ matrix for some index set L,

 $\mathcal{B}\overline{v} = 0 \implies \exists \overline{w} A \overline{w} = \overline{v}$

where the vectors of variables have shapes ${}_{(I)}\overline{v}^1$ and ${}_{(J)}\overline{w}^1$.

If A were row-finite and \overline{v} , \overline{w} , unrestricted, this would just be injectivity.

Axiomatization of 'Dual (A)' [Refresh: November 24]

The previous slide neglected to mention that 'Dual (A)' is a property of a particular left R-module E: it said nothing about where the truth of the formulas displayed is evaluated.

'Dual (A)', revised

A left *R*-module *E* satisfies 'Dual (A)' iff for all column finite ${}_{I}A^{J}$ over *R*, and *B* the left annihilator subspace of *A*, interpreted as an $L \times I$ matrix for some index set *L*, and for all finite $I' \ll I$ and all ${}_{I'}\overline{b}^{1} \in E$,

$$\mathcal{B}'\overline{b} = 0 \implies E \models \exists \overline{w} A \overline{w} = \overline{b}$$

where the existential quantifier is taken in the weak sense: the solution \overline{w} must have finite support.

The previous slide neglected to mention that 'Dual (A)' is a property of a particular left R-module E: it said nothing about where the truth of the formulas displayed is evaluated.

'Dual (A)', revised

A left *R*-module *E* satisfies 'Dual (A)' iff for all column finite ${}_{I}A^{J}$ over *R*, and *B* the left annihilator subspace of *A*, interpreted as an $L \times I$ matrix for some index set *L*, and for all finite $I' \ll I$ and all ${}_{I'}\overline{b}^{1} \in E$,

$$\mathcal{B}^{\prime\prime}\overline{b} = 0 \implies E \models \exists \overline{w} A \overline{w} = \overline{b}$$

where the existential quantifier is taken in the weak sense: the solution \overline{w} must have finite support.

This looks almost like the condition for injectivity, but quite skewed:

Characterization of injectivity

E is injective iff for all row finite matrices ${}_{I}A^{J}$ and ${}_{L}B^{I}$ the left annihilator matrix of *A* (*B* is also necessarily row finite), and all ${}_{I}\overline{b}^{1} \in E$,

$$\mathcal{B}\overline{b} = 0 \implies E \models \exists \overline{w}A\overline{w} = \overline{b}$$
,

where the existential quantifier is taken in the strong sense: the solution \overline{w} is in ${}_{J}E^{1}$.

Let \overline{a} enumerate N, let $A\overline{x} = \overline{b}$ be the system of all linear equations with constants in M satisfied by \overline{a} .

Let \overline{a} enumerate N, let $A\overline{x} = \overline{b}$ be the system of all linear equations with constants in M satisfied by \overline{a} .

Since this system is by definition satisfiable, it is formally consistent; and therefore so is its homomorphic image $A\overline{x} = g(\overline{b})$.

Let \overline{a} enumerate N, let $A\overline{x} = \overline{b}$ be the system of all linear equations with constants in M satisfied by \overline{a} .

Since this system is by definition satisfiable, it is formally consistent; and therefore so is its homomorphic image $A\overline{x} = g(\overline{b})$.

So this system has a solution \overline{b}' in E,

Let \overline{a} enumerate N, let $A\overline{x} = \overline{b}$ be the system of all linear equations with constants in M satisfied by \overline{a} .

Since this system is by definition satisfiable, it is formally consistent; and therefore so is its homomorphic image $A\overline{x} = g(\overline{b})$.

So this system has a solution \overline{b}' in E, and the map $\overline{b} \mapsto \overline{b}'$ is clearly a homomorphism g' extending g.

How did we get the axiomatization of Property A?

... by a lot of

simplification generalization combination

. . .

... by a lot of

simplification generalization combination

. . .

So we probably have to re-entangle and complexify "Dual (A)" to interpret it algebraically.

'Dual (A)', revised

A left *R*-module *E* satisfies 'Dual (A)' iff for all column finite ${}_{I}A^{J}$ over *R*, and *B* the left annihilator subspace of *A*, interpreted as an $L \times I$ matrix for some index set *L*, and for all finite $I' \ll I$ and all ${}_{I'}\overline{b}^{1} \in E$,

$$\mathcal{B}'\overline{b} = 0 \implies E \models \exists \overline{w} A \overline{w} = \overline{b}$$

where the existential quantifier is taken in the weak sense: the solution \overline{w} must have finite support.

Deconstruct the parts; decorate everything with their index sets:

'Dual (A)', deconstructed

A left *R*-module *E* satisfies 'Dual (A)' iff

for all column finite ${}_{I}A^{J}$ over R, and for \mathcal{B} the left annihilator subspace of A, (interpreted as an $L \times I$ matrix for some index set L):

> for all finite $I' \ll I$ and all ${}_{I'}\overline{b}^1 \in E$, ${}_{L}\mathcal{B}'{}_{I'}\overline{b}^1 = {}_{L}0^1$ implies that:

there is finite $J' \ll J$ and $_{J'}\overline{c}^1 \in E$ such that $_{I'}A^{J'}{}_{J'}\overline{c}^1 = _{I'}\overline{b}^1$.

and then since ${\cal B}$ is column finite, we can then restrict to a finite subset $L' \ll L$.

Categorical dual???

locally projective

F finitely generated.

dually locally projective

E/F finitely generated.

Kucera, Rothmaler (UofM, CUNY)

So what really is the relationship of the finite matrix $_{L'}\mathcal{B}^{l'}$ to A?

So what really is the relationship of the finite matrix $_{L'}\mathcal{B}^{l'}$ to A?

Or do we need to 'deconstruct' A?

What role does *A* play in the characterization, as a possibly-infinite-in-both-dimensions column-finite matrix?