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Preliminaries
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Local projectivity

Definition
A module RP is locally projective iff all diagrams

M f // N // 0

F �
�

i
// P

g

OO
g′

``

with the top row exact and F finitely generated, can be completed as
shown, so that fg ′i = fg .
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A characterization of projectivity

A characterization of projectivity
The following are equivalent:

1 RP is projective;

2 RP is a direct summand of a free left R-module;

3 Dual Basis Theorem:
There are elements 〈pi〉i∈I and homomorphisms 〈fi〉i∈I ,
fi : P → R , such that for every p ∈ P ,

1 fi (p) = 0 for almost all i ∈ I ;
2 p = ∑i∈I fi (p)pi .
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Flat modules

Characterizations of flatness
The following are equivalent:

1 RF is flat;
2 The functor ⊗ F : Mod-R → Ab is exact;
3 For every finite r ∈ R and corresponding x ∈ F such that r · x = 0 ,

there is a (finite) matrix A over R and tuple y ∈ F such that rA = 0
and Ay = x .

4 (Rothmaler) For every left pp formula ϕ(x) , ϕ[F ] = ϕ[RR]F .

Free implies Projective implies Flat
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Infinite matrices

Let I and J be non-empty sets; generally treated as index sets with no
other implied structure.

An I × J matrix over R is a function A : I × J → R .

For each i ∈ I , the restriction iA of A to { i } × J is called a row of A .
Similarily we define the columns of A .

A is row finite if every row of A is 0 almost everywhere.
Similarly, column finite.

Similarly, row or column vectors of elements of R , of variables , of
some R-module M .
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Algebra of matrices

IAJ is an I × J matrix.

Two matrices of the same shape may be multiplied by a scalar
(element of R) or added, to yield a matrix of the same shape.

An infinite sum almost all of whose terms are 0 is treated as
well-defined.

Two matrices IAJ and JBK are compatible for multiplication if A is row
finite or if B is column finite, or if more generally, for each i ∈ I and
each k ∈ K , aijbjk = 0 for almost all j ∈ J; in which case we use the
usual definition of matrix multiplication.
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Systems of linear equations

Let A be a row-finite I × J matrix over R , x a J × 1 matrix (column
vector) of variables, and b an I × 1 column vector of elements from an
R-module RM .

Ax = b

is a system of linear equations in x over M .

A solution Ax = b is some n , a J × 1 column vector in some module
RN ≥ RM , such that in N , An = b .
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Solvability and Consistency

A system of linear equations over M is solvable (“semantically
consistent”) if it has a solution in some extension of M,.

[First year linear algebra]

Ax = b is formally (syntactically) consistent if for all 1rI over R which
are 0 almost everywhere, rA = 0 implies rb = 0 .

Theorem
Ax = b is solvable

iff
Ax = b is formally consistent.
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Injective modules

Amongst the many characterizations of injectivity:

Theorem
A module RE is injective

iff
every formally consistent system of equations over E

has a solution in E .

Key point in the proof: using a system of equations to construct a
homomorphism.
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Lecture 2

. . . I don’t know my left hand from my right hand
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Property (A)

Reference
Birge Zimmermann-Huisgen, Pure Submodules of direct products of
free modules, Math. Ann. 224, 233–245 (1976).

Property (A)
Let PR be a right R-module.

(A) For all column-finite matrices IAJ over R and all I-rows m ∈ P
such that mA = 0 , and all finite I ′ ⊂ I ,

there is a finite k -row x ∈ P and a matrix kBI over R such that

BA = 0 and mI ′ = xBI ′ .
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Recall: Flat modules

Characterizations of flatness
The following are equivalent:

1 FR is flat;

2 For every finite r ∈ R and corresponding x ∈ F such that xr = 0 ,
there is a (finite) matrix A over R and tuple y ∈ F such that Ar = 0
and yA = x .
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Recall: Local projectivity

Definition
A module RP is locally projective iff all diagrams

M f // N // 0

F �
�

i
// P

g

OO
g′

``

with the top row exact and F finitely generated,
can be completed as shown, so that fg ′i = gi .
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Characterizations of Locally Projective Modules

Theorem (B. Zimmermann-Huisgen)
The following are equivalent for a module PR:

1 P is locally projective;
2 P has Property (A);
3 For each element m ∈ P , there are x1, . . . xn ∈ P and

homomorphisms f1, . . . , fn : P → RR such that m = ∑j xj fj(m) ;
4 For each finite number of elements m1, . . . ,mk ∈ P , there are

x1, . . . xn ∈ P and homomorphisms f1, . . . , fn : P → RR such that
for each i , 1 ≤ i ≤ k ,

mi = ∑
j

xj fj(mi) .
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Tidying up ‘Property (A)’: quantifiers

As stated, Property (A) has quantifiers scattered in leading and trailing
positions. . . .

Property (A), restated
PR has property (A) iff

for all index sets I and J ,
for all (I)AJ over R ,
for all mI ∈ P ,
for all finite I ′ � I ,

there are finite K , xK ∈ P , K BI over R ,

such that BA = O and mI ′ = xBI ′ .
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Tidying up ‘Property (A)’: families of properties

Property (A), restated one more time
PR has property (A) iff
For all index sets I and J and all matrices (I)AJ over R ,

PR satisfies the following property
(
(I)AJ

)
:

(
(I)AJ

)
∀mI ∈ P , for all I ′ � I ,

there are finite K , xK ∈ P , K BI over R with BA = O
such that mI ′ = xBI ′ .

Kucera, Rothmaler (UofM, CUNY) Property A Winnipeg, 2020-11-24 17 / 36



Tidying up ‘Property (A)’:
(
(I)AJ

)
Expressing

(
(I)AJ

)
as an infinitary implication

1

(
(I)AJ

)
is a property Q(v) with variables v indexed by I of I-tuples

m ∈ P ;
2 “for all I ′ � I” is a conjunction of properties indexed by the finite

subsets of I ,
3 the existential quantifiers can be written as disjunctions over

certain index sets;
4 in particular, the rows of B all must be elements of the left

annihilator B of A :

B =
{

bI : bA = O
}
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Tidying up ‘Property (A)’:
(
(I)AJ

)
(continued)

(
(I)A

J
)

: ∀v I

vA = O −→
∧

I ′�I

∨
k∈ω

∨
xk∈P

∨
k BI∈B

(v I ′ = xBI ′)


The order of the disjunctions doesn’t matter, so “

∨
xk∈P” can return to

an existential quantifier, and the other pair of disjunctions indexes a
family closed upwards under sums, so we get:

(
(I)A

J
)

: ∀v I

vA = O −→
∧

I ′�I
∑

k BI∈B
∃xk (v I ′ = xBI ′)


This is the universal closure of an implication between two generalized
infinitary positive primitive formulas in the sense of my current work
with Rothmaler; and falls into the form of a sentence which has an
elementary dual.
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a bunch of general stuff about elementary duality. . . .
October 20, 2020
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Recall Elementary Duality (very informal summary)

Elementary duality is a lattice anti-isomorphism between the
lattice of pp formulas in the language of left R-modules and the
lattice of pp-formulas in the language of right R-modules (up to
logical equivalence).
Elementary duality provides a categorical equivalence at the level
of Shelah’s “Imaginary Universe” between the category of left
R-modules and the category of right R-modules.
As a consequence of the pp-elimination of quantifiers for modules,
a natural way of axiomatizing theories of modules (complete or
otherwise) is by families of pp-implications: the universal closures
of formulas of the form ϕ→ ψ , where ϕ and ψ are pp formulas.
The elementary dual theory is axiomatized by the implications
Dψ→ Dϕ .
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Infinitary pp formulas

Fix an index set I for the (free) variables of infinitary pp formulas. In
this context it is intended that I be an infinite set.

There are two ways of expanding a finitary pp-formula ϕ(x) to an
I-formula:

1 ϕE = ϕ(x) ∧∧v /∈x (v = v)
2 ϕΩ = ϕ(x) ∧∧v /∈x (v = 0)

Finitary pp formulas are closed under conjunction and sum in a
natural way; infinitary analogues are only closed under conjunction
“naturally”, so we introduce a new infinitary operator Σ with
semantics M |= Σj∈J ϕj [a] (where the ϕj are infinitary pp formulas)
iff a ∈ Σj∈J ϕj [M ] , the sum in the sense of sum of subgroups.
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Dualizable I-properties

Generalizations to the context of I-properties of results of Prest,
Rothmaler and Ziegler.

Theorem (Kucera-Rothmaler)
1 A property P of I-tuples in a module M is dualizable iff it can be

defined by an infinitary pp-formula of the form
∧

J ∑Kj
ϕE

jk where
each ϕjk is an ordinary finitary pp formula in some variables
indexed from I .

2 A property P of I-tuples in a module M which are zero almost
everywhere is dualizable iff it can be defined by an infinitary
pp-formula of the form

∧
J ∑Kj

ϕΩ
jk where each ϕjk is an ordinary

finitary pp formula in some variables indexed from I .
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Duals of dualizable I-properties

Generalizations to the context of I-properties of results of Prest,
Rothmaler and Ziegler. Formulas as on the previous slide.

Theorem (Kucera-Rothmaler)
Let F be the set of all choice functions on

{
Kj : j ∈ J

}
.

1 D(
∧

J ∑Kj
ϕE

jk ) = ∑J
∧

Kj
(Dϕjk )

Ω =
∧

f∈F ∑j∈J(Dϕj,f (j))
Ω .

2 D(
∧

J ∑Kj
ϕΩ

jk ) = ∑J
∧

Kj
(Dϕjk )

E =
∧

f∈F ∑j∈J(Dϕj,f (j))
E
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Reminder: Axiomatiation of Property (A)

PR has property (A) iff
for all index sets I and J and all matrices (I)AJ over R ,

(
(I)A

J
)

: ∀v I

vA = O −→
∧

I ′�I
∑

k BI∈B
∃xk (v I ′ = xBI ′)
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Dual of vA = O

vA = O is equivalent to
∧

j∈J vAj = 0 .

Since A is column finite, vAj is just an ordinary finite linear
combination, which makes no assertion about the value of any vi ,
i not in the support of Aj = Ij � I .

vAj = 0 is thus essentially ((v Ij )(Ij A
j) = 0)E .

The dual of this formula is [∃w(Ij v = Ij A
jw)]Ω .

The dual of vA = O is

∑
j∈J
∃w(v = Ajw)

The solution set in a left module N (that is, as a subset of N(I)) is
AN(J) .
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Dual of
∧

I ′�I ∑
k BI∈B ∃x

k(v I ′ = xBI ′)

∃xk (v I ′ = xBI ′) is understood as [∃xk (v I ′ = xBI ′)]E .
This has dual [kBI ′

I ′v = 0]Ω

The dual of the whole formula is then ∑I ′�I
∧

k BI∈B [kBI ′
I ′v = 0]Ω

The conjunction can be evaluated “one row at a time” so is
equivalent to

∧{
1b

I
: bA=0

}(bI ′
I ′v = 0)Ω

Then, taking the sum over all finite subsets of I , and noting that B„
the left annihilator of A , can be re-interpreted as a giant
I-columned matrix:
the dual statement simplifies to Bv = O with v restricted to taking
on values which are 0 almost everywhere.
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Axiomatization of ‘Dual (A)’

For all column finite IAJ over R , and B the left annihilator subspace of
A , interpreted as an L× I matrix for some index set L ,

Bv = 0 =⇒ ∃w Aw = v

where the vectors of variables have shapes (I)v
1 and (J)w

1 .

If A were row-finite and v , w , unrestricted, this would just be injectivity.
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Axiomatization of ‘Dual (A)’ [Refresh: November 24]

The previous slide neglected to mention that ‘Dual (A)’ is a property of
a particular left R-module E : it said nothing about where the truth of
the formulas displayed is evaluated.

‘Dual (A)’, revised

A left R-module E satisfies ‘Dual (A)’ iff for all column finite IAJ over R ,
and B the left annihilator subspace of A , interpreted as an L× I matrix
for some index set L , and for all finite I ′ � I and all I ′b

1 ∈ E ,

BI ′b = 0 =⇒ E |= ∃w Aw = b

where the existential quantifier is taken in the weak sense: the solution
w must have finite support.

This looks almost like the condition for injectivity, but quite skewed:
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Review of injectivity

Characterization of injectivity

E is injective iff for all row finite matrices IAJ and LBI the left annihilator
matrix of A (B is also necessarily row finite), and all Ib

1 ∈ E ,

Bb = 0 =⇒ E |= ∃wAw = b ,

where the existential quantifier is taken in the strong sense: the
solution w is in JE1 .
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Review of injectivity:
construction of the homomorphism

E

0 // M

g

OO

// N

g′
``

Let a enumerate N , let Ax = b be the system of all linear equations
with constants in M satisfied by a .

Since this system is by definition satisfiable, it is formally consistent;
and therefore so is its homomorphic image Ax = g(b) .

So this system has a solution b
′
in E ,

and the map b 7→ b
′
is clearly a homomorphism g ′ extending g .
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How did we get the axiomatization of Property A?

. . . by a lot of

simplification
generalization
combination

. . .

So we probably have to re-entangle and complexify “Dual (A)” to
interpret it algebraically.
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Expanding Dual (A)

‘Dual (A)’, revised

A left R-module E satisfies ‘Dual (A)’ iff for all column finite IAJ over R ,
and B the left annihilator subspace of A , interpreted as an L× I matrix
for some index set L , and for all finite I ′ � I and all I ′b

1 ∈ E ,

BI ′b = 0 =⇒ E |= ∃w Aw = b

where the existential quantifier is taken in the weak sense: the solution
w must have finite support.

Deconstruct the parts; decorate everything with their index sets:
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Expanding Dual (A), continued

‘Dual (A)’, deconstructed
A left R-module E satisfies ‘Dual (A)’ iff

for all column finite IAJ over R ,
and for B the left annihilator subspace of A , (interpreted as an L× I
matrix for some index set L ):

for all finite I ′ � I and all I ′b
1 ∈ E ,

LBI ′
I ′b

1
= L01 implies that:

there is finite J ′ � J and J ′c
1 ∈ E

such that I ′AJ ′
J ′c

1 = I ′b
1

.

and then since B is column finite, we can then restrict to a finite subset
L′ � L .
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Categorical dual???

locally projective

M f // N // 0

F �
�

i
// P

g

OO
g′

``

F finitely generated.

dually locally projective

E // // F

0 // M

g

OO

// N

g′
``

E/F finitely generated.
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Expanding Dual (A), continued

So what really is the relationship of the finite matrix L′BI ′ to A ?

Or do we need to ‘deconstruct’ A?

What role does A play in the characterization, as a
possibly-infinite-in-both-dimensions column-finite matrix?
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