Locally projective modules, Zimmermann-Huisgen's 'Property (A)', and the elementary dual

T. G. Kucera ${ }^{1} \quad \mathrm{Ph}$. Rothmaler ${ }^{2}$

${ }^{1}$ Department of Mathematics, University of Manitoba Winnipeg, Manitoba, Canada R3T 2N2
${ }^{2}$ Bronx Community College, City University of New York New York, NY USA

Rings and Modules Seminar, Fall 2020

University ofManitoba

Preliminaries

Local projectivity

Definition

A module ${ }_{R} P$ is locally projective iff all diagrams

with the top row exact and F finitely generated, can be completed as shown, so that $f g^{\prime} i=f g$.

A characterization of projectivity

A characterization of projectivity

The following are equivalent:
(1) ${ }_{R} P$ is projective;
(2) ${ }_{R} P$ is a direct summand of a free left R-module;
(3) Dual Basis Theorem:

There are elements $\left\langle p_{i}\right\rangle_{i \in I}$ and homomorphisms $\left\langle f_{i}\right\rangle_{i \in 1}$, $f_{i}: P \rightarrow R$, such that for every $p \in P$,

- $f_{i}(p)=0$ for almost all $i \in I$;
(2) $p=\sum_{i \in 1} f_{i}(p) p_{i}$.

Flat modules

Characterizations of flatness

The following are equivalent:
(1) ${ }_{R} F$ is flat;
(2) The functor __ $\otimes F: \operatorname{Mod}-R \rightarrow \mathbf{A b}$ is exact;
(3) For every finite $\mathbf{r} \in R$ and corresponding $\mathbf{x} \in F$ such that $\mathbf{r} \cdot \mathbf{x}=0$, there is a (finite) matrix A over R and tuple $\mathbf{y} \in F$ such that $\mathbf{r} A=0$ and $A \mathbf{y}=\mathbf{x}$.
(9) (Rothmaler) For every left pp formula $\varphi(\mathbf{x}), \varphi[F]=\varphi\left[{ }_{R} R\right] F$.

Free implies Projective implies Flat

Infinite matrices

Let I and J be non-empty sets; generally treated as index sets with no other implied structure.

An $I \times J$ matrix over R is a function $A: I \times J \rightarrow R$.

For each $i \in I$, the restriction ${ }_{i} A$ of A to $\{i\} \times J$ is called a row of A. Similarily we define the columns of A.
A is row finite if every row of A is 0 almost everywhere. Similarly, column finite.

Similarly, row or column vectors of elements of R, of variables, of some R-module M.

Algebra of matrices

${ }^{\prime} A^{J}$ is an $I \times J$ matrix.

Two matrices of the same shape may be multiplied by a scalar (element of R) or added, to yield a matrix of the same shape.

An infinite sum almost all of whose terms are 0 is treated as well-defined.

Two matrices, A^{J} and ${ }_{\jmath} B^{K}$ are compatible for multiplication if A is row finite or if B is column finite, or if more generally, for each $i \in I$ and each $k \in K, a_{i j} b_{j k}=0$ for almost all $j \in J$; in which case we use the usual definition of matrix multiplication.

Systems of linear equations

Let A be a row-finite $I \times J$ matrix over R, \mathbf{x} a $J \times 1$ matrix (column vector) of variables, and \mathbf{b} an $I \times 1$ column vector of elements from an R-module ${ }_{R} M$.

$$
A \mathbf{x}=\mathbf{b}
$$

is a system of linear equations in \mathbf{x} over M.

A solution $A \mathbf{x}=\mathbf{b}$ is some $\mathbf{n}, a \mathrm{a} \times 1$ column vector in some module ${ }_{R} N \geq{ }_{R} M$, such that in $N, A \mathbf{n}=\mathbf{b}$.

Solvability and Consistency

A system of linear equations over M is solvable ("semantically consistent") if it has a solution in some extension of M,.
[First year linear algebra]

A $\mathbf{x}=\mathbf{b}$ is formally (syntactically) consistent if for all ${ }_{1} \mathbf{r}^{\prime}$ over R which are 0 almost everywhere, $\mathbf{r} A=\mathbf{0}$ implies $\mathbf{r b}=0$.

Theorem

A $\mathbf{x}=\mathbf{b}$ is solvable iff

$$
A \mathbf{x}=\mathbf{b} \text { is formally consistent. }
$$

Injective modules

Amongst the many characterizations of injectivity:

Theorem

A module ${ }_{R} E$ is injective iff
every formally consistent system of equations over E has a solution in E.

Key point in the proof: using a system of equations to construct a homomorphism.

Lecture 2

... I don't know my left hand from my right hand

Property (A)

Reference

Birge Zimmermann-Huisgen, Pure Submodules of direct products of free modules, Math. Ann. 224, 233-245 (1976).

Property (A)

Let P_{R} be a right R-module.
(A) For all column-finite matrices,A^{J} over R and all I-rows $\mathbf{m} \in P$ such that $\mathbf{m} A=0$, and all finite $I^{\prime} \subset I$,
there is a finite k-row $\mathbf{x} \in P$ and a matrix ${ }_{k} B^{\prime}$ over R such that

$$
B A=0 \text { and } \mathbf{m}^{\prime \prime}=\mathbf{x} B^{\prime \prime} .
$$

Recall: Flat modules

Characterizations of flatness

The following are equivalent:
(1) F_{R} is flat;
(2) For every finite $\mathbf{r} \in R$ and corresponding $\mathbf{x} \in F$ such that $\mathbf{x r}=0$, there is a (finite) matrix A over R and tuple $\mathbf{y} \in F$ such that $A \mathbf{r}=0$ and $\mathbf{y} \mathbf{A}=\mathbf{x}$.

Recall: Local projectivity

Definition

A module ${ }_{R} P$ is locally projective iff all diagrams

with the top row exact and F finitely generated, can be completed as shown, so that $\operatorname{fg}^{\prime} i=g i$.

Characterizations of Locally Projective Modules

Theorem (B. Zimmermann-Huisgen)

The following are equivalent for a module P_{R} :
(1) P is locally projective;
(2) P has Property (A);
(3) For each element $m \in P$, there are $x_{1}, \ldots x_{n} \in P$ and homomorphisms $f_{1}, \ldots, f_{n}: P \rightarrow R_{R}$ such that $m=\sum_{j} x_{j} f_{j}(m)$;
(4) For each finite number of elements $m_{1}, \ldots, m_{k} \in P$, there are $x_{1}, \ldots x_{n} \in P$ and homomorphisms $f_{1}, \ldots, f_{n}: P \rightarrow R_{R}$ such that for each $i, 1 \leq i \leq k$,

$$
m_{i}=\sum_{j} x_{j} f_{j}\left(m_{i}\right)
$$

Tidying up 'Property (A)': quantifiers

As stated, Property (A) has quantifiers scattered in leading and trailing positions....

Property (A), restated

P_{R} has property (A) iff for all index sets $/$ and J, for all ${ }_{(I)} A^{J}$ over R,
for all $\mathbf{m}^{\prime} \in P$, for all finite $I^{\prime} \ll I$,
there are finite $K, \mathbf{x}^{K} \in P,{ }_{K} B^{\prime}$ over R, such that $B A=\mathcal{O}$ and $\mathbf{m}^{\prime \prime}=\mathbf{x} B^{\prime \prime}$.

Tidying up 'Property (A)': families of properties

Property (A), restated one more time

P_{R} has property (A) iff
For all index sets I and J and all matrices ${ }_{(I)} A^{J}$ over R,
P_{R} satisfies the following property $\left({ }_{(1)} A^{J}\right)$:
$\left({ }_{(I)} A^{J}\right) \quad \forall \mathbf{m}^{\prime} \in P$, for all $I^{\prime} \ll I$,
there are finite $K, \mathbf{x}^{K} \in P,{ }_{k} B^{\prime}$ over R with $B A=\mathcal{O}$ such that $\mathbf{m}^{\prime \prime}=\mathbf{x} B^{\prime \prime}$.

Tidying up 'Property $(A)^{\prime}:\left({ }_{(1)} A^{J}\right)$

Expressing $\left({ }_{(I)} A^{J}\right)$ as an infinitary implication

(1) $\left({ }_{(I)} A^{J}\right)$ is a property $Q(\bar{v})$ with variables \bar{v} indexed by I of I-tuples $\mathbf{m} \in P ;$
(2) "for all $I \ll l$ " is a conjunction of properties indexed by the finite subsets of I,
(3) the existential quantifiers can be written as disjunctions over certain index sets;
(4) in particular, the rows of B all must be elements of the left annihilator \mathcal{B} of A :

$$
\mathcal{B}=\left\{\mathbf{b}^{\mathbf{l}}: \mathbf{b} A=\mathcal{O}\right\}
$$

Tidying up 'Property (A)': $\left({ }_{(1)} A^{J}\right)$ (continued)

$$
\left({ }_{(I)} A^{J}\right): \quad \forall \bar{v}^{\prime}\left[\bar{v} A=\mathcal{O} \longrightarrow \bigwedge_{I^{\prime}<I} \bigvee_{k \in \omega} \bigvee_{\bar{x}^{k} \in P_{k} B^{\prime} \in \mathcal{B}} \bigvee\left(\bar{v}^{\prime \prime}=\bar{x} B^{\prime^{\prime}}\right)\right]
$$

The order of the disjunctions doesn't matter, so " $\bigvee_{\bar{x}} \in p$ " can return to an existential quantifier, and the other pair of disjunctions indexes a family closed upwards under sums, so we get:

$$
\left({ }_{(1)} A^{J}\right): \quad \forall \bar{v}^{\prime}\left[\bar{v} A=\mathcal{O} \longrightarrow \bigwedge_{\prime^{\prime}<I_{k} B^{\prime} \in \mathcal{B}} \exists \bar{x}^{\kappa}\left(\bar{v}^{\prime \prime}=\bar{x} B^{\prime^{\prime}}\right)\right]
$$

This is the universal closure of an implication between two generalized infinitary positive primitive formulas in the sense of my current work with Rothmaler; and falls into the form of a sentence which has an elementary dual.
a bunch of general stuff about elementary duality.... October 20, 2020

Recall Elementary Duality (very informal summary)

- Elementary duality is a lattice anti-isomorphism between the lattice of pp formulas in the language of left R-modules and the lattice of pp -formulas in the language of right R-modules (up to logical equivalence).
- Elementary duality provides a categorical equivalence at the level of Shelah's "Imaginary Universe" between the category of left R-modules and the category of right R-modules.
- As a consequence of the pp-elimination of quantifiers for modules, a natural way of axiomatizing theories of modules (complete or otherwise) is by families of pp-implications: the universal closures of formulas of the form $\varphi \rightarrow \psi$, where φ and ψ are pp formulas.
- The elementary dual theory is axiomatized by the implications $\mathrm{D} \psi \rightarrow \mathrm{D} \varphi$.

Infinitary pp formulas

Fix an index set / for the (free) variables of infinitary pp formulas. In this context it is intended that I be an infinite set.

- There are two ways of expanding a finitary pp-formula $\varphi(\bar{x})$ to an I-formula:
(1) $\varphi^{\mathrm{E}}=\varphi(\bar{x}) \wedge \wedge_{v \notin \bar{x}}(v=v), ~(v)$
- Finitary pp formulas are closed under conjunction and sum in a natural way; infinitary analogues are only closed under conjunction "naturally", so we introduce a new infinitary operator Σ with semantics $M \models \Sigma_{j \in J} \varphi_{j}[\bar{a}]$ (where the φ_{j} are infinitary pp formulas) iff $\bar{a} \in \Sigma_{j \in J} \varphi_{j}[M]$, the sum in the sense of sum of subgroups.

Dualizable I-properties

Generalizations to the context of I-properties of results of Prest, Rothmaler and Ziegler.

Theorem (Kucera-Rothmaler)

(1) A property P of I-tuples in a module M is dualizable iff it can be defined by an infinitary pp-formula of the form $\wedge_{J} \sum_{K_{j}} \varphi_{j k}^{\mathrm{E}}$ where each $\varphi_{j k}$ is an ordinary finitary pp formula in some variables indexed from l.
(2) A property P of I-tuples in a module M which are zero almost everywhere is dualizable iff it can be defined by an infinitary pp-formula of the form $\wedge_{J} \sum_{K_{j}} \varphi_{j k}^{\Omega}$ where each $\varphi_{j k}$ is an ordinary finitary pp formula in some variables indexed from I.

Duals of dualizable I-properties

Generalizations to the context of I-properties of results of Prest, Rothmaler and Ziegler. Formulas as on the previous slide.

Theorem (Kucera-Rothmaler)

Let \mathcal{F} be the set of all choice functions on $\left\{K_{j}: j \in J\right\}$.
(1) $\mathrm{D}\left(\wedge_{J} \sum_{K_{j}} \varphi_{j k}^{\mathrm{E}}\right)=\sum_{J} \bigwedge_{K_{j}}\left(\mathrm{D} \varphi_{j k}\right)^{\Omega}=\bigwedge_{f \in \mathcal{F}} \sum_{j \in J}\left(\mathrm{D} \varphi_{j, f(j)}\right)^{\Omega}$.
(2) $\mathrm{D}\left(\bigwedge_{J} \sum_{K_{j}} \varphi_{j k}^{\Omega}\right)=\sum_{J} \bigwedge_{K_{j}}\left(\mathrm{D} \varphi_{j k}\right)^{\mathrm{E}}=\bigwedge_{f \in \mathcal{F}} \sum_{j \in J}\left(\mathrm{D} \varphi_{j, f(j)}\right)^{\mathrm{E}}$

Reminder: Axiomatiation of Property (A)

P_{R} has property (A) iff for all index sets $/$ and J and all matrices ${ }_{(I)} A^{J}$ over R,

$$
\left({ }_{(I)} A^{J}\right): \quad \forall \bar{v}^{\prime}\left[\bar{v} A=\mathcal{O} \longrightarrow \bigwedge_{\prime^{\prime}<I_{k} B^{\prime} \in \mathcal{B}} \exists \bar{x}^{\kappa}\left(\bar{v}^{\prime}=\bar{x} B^{\prime^{\prime}}\right)\right]
$$

Dual of $\bar{v} A=\mathcal{O}$

- $\bar{v} A=\mathcal{O}$ is equivalent to $\bigwedge_{j \in J} \bar{v} A^{j}=0$.

Since A is column finite, $\bar{v} A^{j}$ is just an ordinary finite linear combination, which makes no assertion about the value of any v_{i}, i not in the support of $A^{j}=I_{j} \ll I$.

- $\bar{v} A^{j}=0$ is thus essentially $\left(\left(\bar{v}^{l_{j}}\right)\left(\iota_{j} A^{j}\right)=0\right)^{\mathrm{E}}$.
- The dual of this formula is $\left[\exists w\left({ }_{\iota_{j}} \bar{v}={\iota_{j}} A^{j} w\right)\right]^{\Omega}$.
- The dual of $\bar{v} A=\mathcal{O}$ is

$$
\sum_{j \in J} \exists w\left(\bar{v}=A^{j} w\right)
$$

- The solution set in a left module N (that is, as a subset of $\left.N^{(I)}\right)$ is $A N^{(J)}$.

Dual of $\bigwedge_{r \ll 1} \sum_{k} B^{\prime} \in \mathcal{B} \cdot \bar{x}^{k}\left(\bar{v}^{\prime \prime}=\bar{x} B^{\prime^{\prime}}\right)$

- $\exists \bar{x}^{\kappa}\left(\bar{v}^{\prime \prime}=\bar{x} B^{\prime \prime}\right)$ is understood as $\left[\exists \bar{x}^{\kappa}\left(\bar{v}^{\prime \prime}=\bar{x} B^{\prime \prime}\right)\right]^{\mathrm{E}}$.
- This has dual $\left[{ }_{k} B^{\prime \prime}{ }_{\mu} \bar{v}=0\right]^{\Omega}$

Dual of $\bigwedge_{r \ll 1} \sum_{k} B^{\prime} \in \mathcal{B} \cdot \bar{x}^{k}\left(\bar{v}^{\prime \prime}=\bar{x} B^{\prime^{\prime}}\right)$

- $\exists \bar{x}^{k}\left(\bar{v}^{\prime \prime}=\bar{x} B^{\prime \prime}\right)$ is understood as $\left[\exists \bar{x}^{k}\left(\bar{v}^{\prime \prime}=\bar{x} B^{\prime \prime}\right)\right]^{\mathrm{E}}$.
- This has dual $\left[{ }_{k} B^{\prime \prime}{ }_{\mu} \bar{v}=0\right]^{\Omega}$
- The dual of the whole formula is then $\sum_{l^{\prime} \ll I} \Lambda_{k} B^{\prime} \in \mathcal{B}\left[{ }_{k} B^{l^{\prime}}{ }_{\prime} \bar{\nabla}=0\right]^{\Omega}$

Dual of $\bigwedge_{r^{\prime} \ll 1} \sum_{k} B^{\prime} \in \mathcal{B} \cdot \bar{x}^{k}\left(\bar{v}^{\prime \prime}=\bar{x} B^{\prime \prime}\right)$

- $\exists \bar{x}^{\kappa}\left(\bar{v}^{\prime \prime}=\bar{x} B^{\prime \prime}\right)$ is understood as $\left[\exists \bar{x}^{\kappa}\left(\bar{v}^{\prime \prime}=\bar{x} B^{\prime \prime}\right)\right]^{\mathrm{E}}$.
- This has dual $\left[{ }_{k} B^{\prime \prime}{ }_{\mu} \bar{v}=0\right]^{\Omega}$
- The dual of the whole formula is then $\sum_{\prime^{\prime} \ll 1} \wedge_{k} B^{\prime} \in \mathcal{B}\left[{ }_{k} B^{\prime \prime}{ }_{\mu} \bar{V}=0\right]^{\Omega}$
- The conjunction can be evaluated "one row at a time" so is equivalent to $\wedge_{\left\{, \bar{b}^{\prime}: \bar{b} A=0\right\}}\left(\bar{b}^{\prime \prime}, \overline{\bar{V}}=0\right)^{\Omega}$

Dual of $\bigwedge_{r^{\ll 1}} \sum_{k} B^{\prime} \in \mathcal{B} ~ \exists \bar{x}^{k}\left(\bar{v}^{\prime \prime}=\bar{x} B^{\prime \prime}\right)$

- $\exists \bar{x}^{\kappa}\left(\bar{v}^{\prime \prime}=\bar{x} B^{\prime \prime}\right)$ is understood as $\left[\exists \bar{x}^{\kappa}\left(\bar{v}^{\prime \prime}=\bar{x} B^{\prime \prime}\right)\right]^{\mathrm{E}}$.
- This has dual $\left[{ }_{k} B^{\prime \prime}{ }_{\mu} \bar{v}=0\right]^{\Omega}$
- The dual of the whole formula is then $\sum_{\prime^{\prime} \ll 1} \wedge_{k} B^{\prime} \in \mathcal{B}\left[{ }_{k} B^{\prime \prime}{ }_{\mu} \bar{V}=0\right]^{\Omega}$
- The conjunction can be evaluated "one row at a time" so is equivalent to $\wedge_{\left\{, \bar{b}^{\prime}: \bar{b} A=0\right\}}\left(\bar{b}^{\prime \prime}{ }_{\mu} \overline{\bar{v}}=0\right)^{\Omega}$
- Then, taking the sum over all finite subsets of I, and noting that \mathcal{B}, the left annihilator of A, can be re-interpreted as a giant l-columned matrix:
- the dual statement simplifies to $\mathcal{B} \bar{v}=\mathcal{O}$ with \bar{v} restricted to taking on values which are 0 almost everywhere.

Axiomatization of 'Dual (A)'

For all column finite , A^{J} over R, and \mathcal{B} the left annihilator subspace of A, interpreted as an $L \times I$ matrix for some index set L,

$$
\mathcal{B} \bar{v}=0 \Longrightarrow \exists \bar{w} A \bar{w}=\bar{v}
$$

where the vectors of variables have shapes ${ }_{(I)} \bar{v}^{1}$ and ${ }_{(J)} \bar{w}^{1}$.

Axiomatization of 'Dual (A)'

For all column finite,A^{J} over R, and \mathcal{B} the left annihilator subspace of A, interpreted as an $L \times I$ matrix for some index set L,

$$
\mathcal{B} \bar{v}=0 \Longrightarrow \exists \bar{w} A \bar{w}=\bar{v}
$$

where the vectors of variables have shapes ${ }_{(I)} \bar{v}^{1}$ and ${ }_{(J)} \bar{w}^{1}$.

If A were row-finite and \bar{v}, \bar{w}, unrestricted, this would just be injectivity.

Axiomatization of 'Dual (A)' [Refresh: November 24]

The previous slide neglected to mention that 'Dual (A)' is a property of a particular left R-module E : it said nothing about where the truth of the formulas displayed is evaluated.

'Dual (A)', revised

A left R-module E satisfies 'Dual (A)' iff for all column finite ${ }^{\prime} A^{J}$ over R, and \mathcal{B} the left annihilator subspace of A, interpreted as an $L \times I$ matrix for some index set L, and for all finite $I^{\prime} \ll I$ and all ${ }_{\mu} \bar{b}^{1} \in E$,

$$
\mathcal{B}^{\prime \prime} \bar{b}=0 \Longrightarrow E \models \exists \bar{w} A \bar{w}=\bar{b}
$$

where the existential quantifier is taken in the weak sense: the solution \bar{w} must have finite support.

Axiomatization of ‘Dual (A)' [Refresh: November 24]

The previous slide neglected to mention that 'Dual (A)' is a property of a particular left R-module E : it said nothing about where the truth of the formulas displayed is evaluated.

'Dual (A)', revised

A left R-module E satisfies 'Dual (A)' iff for all column finite ${ }_{ן} A^{J}$ over R, and \mathcal{B} the left annihilator subspace of A, interpreted as an $L \times I$ matrix for some index set L, and for all finite $I^{\prime} \ll I$ and all ${ }_{\mu} \bar{b}^{1} \in E$,

$$
\mathcal{B}^{\prime \prime} \bar{b}=0 \Longrightarrow E \models \exists \bar{w} A \bar{w}=\bar{b}
$$

where the existential quantifier is taken in the weak sense: the solution \bar{w} must have finite support.

This looks almost like the condition for injectivity, but quite skewed:

Review of injectivity

Characterization of injectivity

E is injective iff for all row finite matrices,A^{J} and \mathcal{L}^{\prime} the left annihilator matrix of A (\mathcal{B} is also necessarily row finite), and all $\bar{b}^{1} \in E$,

$$
\mathcal{B} \bar{b}=0 \Longrightarrow E \models \exists \bar{w} A \bar{w}=\bar{b},
$$

where the existential quantifier is taken in the strong sense: the solution \bar{w} is in ${ }_{J} E^{1}$.

Review of injectivity: construction of the homomorphism

Let \bar{a} enumerate N, let $A \bar{x}=\bar{b}$ be the system of all linear equations with constants in M satisfied by \bar{a}.

Review of injectivity: construction of the homomorphism

Let \bar{a} enumerate N, let $A \bar{x}=\bar{b}$ be the system of all linear equations with constants in M satisfied by \bar{a}.

Since this system is by definition satisfiable, it is formally consistent; and therefore so is its homomorphic image $A \bar{x}=g(\bar{b})$.

Review of injectivity: construction of the homomorphism

Let \bar{a} enumerate N, let $A \bar{x}=\bar{b}$ be the system of all linear equations with constants in M satisfied by \bar{a}.

Since this system is by definition satisfiable, it is formally consistent; and therefore so is its homomorphic image $A \bar{x}=g(\bar{b})$.

So this system has a solution \bar{b}^{\prime} in E,

Review of injectivity: construction of the homomorphism

Let \bar{a} enumerate N, let $A \bar{x}=\bar{b}$ be the system of all linear equations with constants in M satisfied by \bar{a}.

Since this system is by definition satisfiable, it is formally consistent; and therefore so is its homomorphic image $A \bar{x}=g(\bar{b})$.

So this system has a solution \bar{b}^{\prime} in E, and the $\operatorname{map} \bar{b} \mapsto \bar{b}^{\prime}$ is clearly a homomorphism g^{\prime} extending g.

How did we get the axiomatization of Property A?

... by a lot of

simplification generalization combination

How did we get the axiomatization of Property A?

... by a lot of

simplification generalization
combination

So we probably have to re-entangle and complexify "Dual (A)" to interpret it algebraically.

Expanding Dual (A)

'Dual (A)', revised

A left R-module E satisfies 'Dual (A)' iff for all column finite ${ }^{\prime} A^{J}$ over R, and \mathcal{B} the left annihilator subspace of A, interpreted as an $L \times I$ matrix for some index set L, and for all finite $I^{\prime} \ll I$ and all ${ }_{\mu} \bar{b}^{1} \in E$,

$$
\mathcal{B}^{\prime} \bar{b}=0 \Longrightarrow E \models \exists \bar{w} A \bar{w}=\bar{b}
$$

where the existential quantifier is taken in the weak sense: the solution \bar{w} must have finite support.

Deconstruct the parts; decorate everything with their index sets:

Expanding Dual (A), continued

'Dual (A)', deconstructed

A left R-module E satisfies 'Dual (A)' iff for all column finite,A^{J} over R, and for \mathcal{B} the left annihilator subspace of A, (interpreted as an $L \times I$ matrix for some index set L):
for all finite $I^{\prime} \ll I$ and all $I^{1} \bar{b}^{1} \in E$,

$$
\angle \mathcal{B}^{\prime \prime}{ }_{r} \bar{b}^{1}=\angle 0^{1} \text { implies that: }
$$ there is finite $J^{\prime} \ll J$ and ${ }_{J^{\prime}} \bar{C}^{1} \in E$ such that ${ }_{\mu} A^{J^{\prime}}{ }_{\mu} \bar{C}^{1}={ }_{\mu} \bar{b}^{1}$.

and then since \mathcal{B} is column finite, we can then restrict to a finite subset $L^{\prime} \ll L$.

Categorical dual???

locally projective

F finitely generated.

dually locally projective

E / F finitely generated.

Expanding Dual (A), continued

So what really is the relationship of the finite matrix ${L^{\prime}}^{\mathcal{B}^{\prime}}$ to A ?

Expanding Dual (A), continued

So what really is the relationship of the finite matrix $L^{\prime} \mathcal{B}^{\prime \prime}$ to A ?

Or do we need to 'deconstruct' A?
What role does A play in the characterization, as a possibly-infinite-in-both-dimensions column-finite matrix?

