## Volumes

MATH 1700

## Readings

Readings: Section 6.2, 6.3

## Volumes of some simple shapes

- The volume of a rectangle of length $I$, width $w$ and height $h$ is $V=I w h$.
- A cylinder in math is any shape obtained by translating a planar region perpendicular to itself a distance $h$. The volume of a cylinder is the area $A$ of the region times $h: V=A h$.


## Definition of Volume

## Definition

Let $S$ be a solid which lies between $x=a$ and $x=b$. Assume that the area of the slice at $x$ is $A(x)$, and that $A(x)$ is a continuous function of $x$. Then

$$
\text { Volume }=\int_{a}^{b} A(x) d x
$$

## Definition of Volume

## Definition

Let $S$ be a solid which lies between $x=a$ and $x=b$. Assume that the area of the slice at $x$ is $A(x)$, and that $A(x)$ is a continuous function of $x$. Then

$$
\text { Volume }=\int_{a}^{b} A(x) d x
$$

If the shape $S$ lies between $y=a$ and $y=b$ and the slice at $y$ has area $A(y)$, then

$$
\text { Volume }=\int_{a}^{b} A(y) d y
$$

## Special case: "washer method" for solids of revolution

Rotated around a line parallel to the $x$-axis:
Let $R$ be a region between $x=a$ and $x=b$.
The volume of the region obtained by rotating $R$ around a line parallel to the $x$-axis is

$$
V=\int_{a}^{b} A(x) d x=\int_{a}^{b}\left(\pi(\text { outer radius })^{2}-\pi(\text { inner radius })^{2}\right) d x
$$

Note: you must write the inner and outer radius as a function of $x$.

## Special case: "washer method" for solids of revolution

Rotated around a line parallel to the $y$-axis:
Let $R$ be a region between $y=c$ and $y=d$.
The volume of the region obtained by rotating $R$ around a line parallel to the $y$-axis is

$$
V=\int_{c}^{d} A(y) d y=\int_{c}^{d}\left(\pi(\text { outer radius })^{2}-\pi(\text { inner radius })^{2}\right) d y
$$

Note: you must write the inner and outer radius as a function of $y$.

## The volume of a thick cylinder

Let $S$ be a cylinder of outer radius $r_{2}$, inner radius $r_{1}$ and height $h$. Its volume is

$$
V=\pi r_{2}^{2} h-\pi r_{1}^{2} h=\pi\left(r_{2}+r_{1}\right)\left(r_{2}-r_{1}\right) h
$$

## The volume of a thick cylinder

Let $S$ be a cylinder of outer radius $r_{2}$, inner radius $r_{1}$ and height $h$. Its volume is

$$
V=\pi r_{2}^{2} h-\pi r_{1}^{2} h=\pi\left(r_{2}+r_{1}\right)\left(r_{2}-r_{1}\right) h
$$

If we set $r=\left(r_{1}+r_{2}\right) / 2$ and $\Delta r=r_{2}-r_{1}$ then

$$
\Delta V=2 \pi r h \Delta r
$$

## Special case: cylindrical shell method for solids of revolution

Let $R$ be the region under $y=f(x)$ and above the $x$ axis between $x=a$ and $x=b$.

Let $S$ be the solid obtained by rotating $R$ about the $y$-axis.
Then

$$
V=\int_{a}^{b} 2 \pi x f(x) d x
$$

## Special case: cylindrical shell method for solids of revolution

In general, let $R$ be a region in the $x / y$ plane between $x=a$ and $x=b$ and $S$ be the solid obtained by rotating $R$ about the $y$-axis. If $h(x)$ is the height of the cylindrical shell as a function of $x$, then

$$
V=\int_{a}^{b} 2 \pi x h(x) d x
$$

## General warning

Warning: Don't just memorize formulas. It's better to understand them geometrically.

## General warning

Warning: Don't just memorize formulas. It's better to understand them geometrically.

Besides being more interesting, you will avoid mistakes.

## General warning

Warning: Don't just memorize formulas. It's better to understand them geometrically.

Besides being more interesting, you will avoid mistakes.

Draw pictures!

