
Problems for MATH 4710 This is not a problem set to be handed in!

Note: There are a few exercises which I answered or will answer in class; I included them here because
they belonged with other similar exercises.

Most recent update: Sep 11, 2018

Branch cuts

1. Show that the function log0 z defined on C\L0 cannot be continuously extended to C\{0}.

2. Write expressions for the two branches of square root on C\L−π. That is, if z = reiψ for ψ ∈ (−π, π),
given expressions for

√
z in terms of r and ψ. Sketch the domain and range.

3. Write expressions for the three branches of cube root on C\L0. Sketch the domain and range.

Riemann surfaces

4. (a) Verify that the Riemann sphere is a Riemann surface with charts φ(z) = 1/z on C∞\{0} and
ψ(z) = z on C.

(b) Show that f : C∞ → C∞ is a holomorphic map of Riemann surfaces (in the special sense given
in the second lecture) if and only if f is meromorphic and not identically equal to ∞.

5. Let Γ = {mτ1 + nτ2 : m,n ∈ Z} where τ1 and τ2 are real linearly independent complex numbers. Let
R = C/Γ be the torus as defined in class.

(a) Show that any holomorphic function f : R→ C is constant.

(b) Let f : R → C∞ be a meromorphic function (equivalently, a holomorphic map between the
Riemann surfaces R and C∞ which is not identically equal to ∞). Show that the sum of the
residues of f is zero. Hint: let Γ be the curve consisting of four sides of a parallelogram which
is a translation of the parallelogram spanned by τ1 and τ2, traced with positive orientation. For
some translation there are no poles on Γ. Why is the integral zero?

(c) Assume that f is not constant. Show that the number of zeros equals the number of poles, by
considering the integral ∫

Γ

f ′(z)

f(z)
dz

and applying the argument principle.

(d) Modify the previous exercise to show that if f is not constant, then f takes on each value in C∞
the same number of times counting multiplicity. Note: this is a generic property of meromorphic
functions on compact Riemann surfaces.

Topology and geometry of the C∞, C and D

6. Let f be holomorphic on a domain U ⊂ C∞. Show that f is a continuous map from (C∞, ds) into
(C, de).

7. Let f be meromorphic on a domain U ⊂ C. Show that f is a continuous map from U into C∞. (It’s
enough to show that f is continuous at each pole).

8. Let f be meromorphic on a domain U ⊂ C∞. Show that f is a continuous map from C∞ to C∞. (By
the previous exercise, it’s enough to show that f is continuous at ∞, if ∞ ∈ U .)
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9. (a) For k > 0, k ∈ Z, show that f(z) = z−k for k < 0, is holomorphic on C∞\{0}.
(b) For k > 0, k ∈ Z, show that f(z) = zk is meromorphic on C∞ (with a pole of order k at ∞).

10. Prove the formula for stereographic projection using trigonometry: for z = x + iy in the plane, the
point (x1, x2, x3) on the surface is given by

x1 =
2x

|z|2 + 1

x2 =
2y

|z|2 + 1

x3 =
|z|2 − 1

|z|2 + 1
.

and

z =
x1 + ix2

1− x3
.

11. This exercise shows that the formula for the spherical length of a curve that I gave in class, really is
the length along the sphere. Let z = x + iy ∈ C, and (x1, x2, x3) be the corresponding point on the
sphere x2

1 + x2
2 + x2

3 = 1. Let φ and θ denote the spherical coordinates of this point

x1 = sinφ cos θ

x2 = sinφ sin θ

x3 = cosφ.

Finally, let (φ(t), θ(t)), a ≤ t ≤ b be the spherical coordinates of a curve on the sphere, and

α(t) = (x1(φ(t), θ(t)) , x2(φ(t), θ(t)) , x3(φ(t), θ(t)) )

be the same curve in Cartesian coordinates.

(a) Show that the length of α is∫ b

a

√
ẋ2

1 + ẋ2
2 + ẋ2

3dt =

∫ b

a

√
φ̇2 + sin2 φ θ̇2dt.

(b) Show that

z =
sinφ

1− cosφ
eiθ.

Of course you’ll need the formula for stereographic projection.

(c) Show that, if z = γ(t) is the curve traced in the plane under stereographic projection, that∫
γ

2|dz|
1 + |z|2

=

∫ b

a

√
φ̇2 + sin2 φ θ̇2dt.

12. (a) Show that the map T (z) = eiθ/z satisfies

|T ′(z)|
1 + |T (z)|2

=
1

1 + |z|2
.

(b) Let γ : [a, b] → C∞\{0} be a curve which passes through ∞ at a single point c ∈ (a, b) and is
smooth. (That is, γ(t) is C∞ on (a, c) ∪ (c, b) and there is an open interval I containing c such
that 1/γ(t) is smooth.) Use part (a) to show that∫

γ

|dz|
1 + |z|2

=

∫
1/γ

|dz|
1 + |z|2

.

Note: this allows us to define the length of curves through ∞.
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13. (a) Show that the chordal and spherical distances are related by

dc(z, w) = 2 sin (ds(z, w)/2).

Use a trigonometric argument and the fact that under stereographic projection, the spherical
distance is the length of a great circle on the unit sphere, while the chordal distance is the distance
in R3. Hint: the spherical distance equals the angle subtended by the rays joining (0, 0, 0) to each
of the two points on the sphere.

(b) Conclude that for any z ∈ C∞ and r ∈ [0, π], Bc(z, 2 sin (r/2)) = Bs(z, r). Note: I made a mistake
in class on page 3 of Lecture 5. This corrects it. (Either the domain of f has to be changed on
page (2) or the equation relating Bc and Bs should be changed).

14. Prove that if (x1, x2, x3) on the sphere x2
1 + x2

2 + x2
3 = 1 maps to the point z in the plane under

stereographic projection based at the north pole (0, 0, 1), then it maps to w = 1/z̄ under stereographic
projection based at the south pole (0, 0,−1). Hint: try working with a great circle through the north
and south pole to determine how |w| and |z| are related; the relation between their arguments is easy
to find.

15. (a) Show that ds(z̄, w̄) = ds(z, w).

(b) Show that ds(−z,−w) = ds(z, w).

(c) Show that ds(1/z, 1/w) = ds(z, w).

(d) Show that ds(−1/z̄,−1/w̄) = ds(z, w).

16. Show that the points z and −1/z̄ are antipodal; i.e. they lie on opposite sides of the sphere.

17. (a) Show that if

T (z) = eiθ
(z − a)

1 + āz
, a ∈ C

then
|T ′(z)|2

(1 + |T (z)|2)2
=

1

(1 + |z|2)2
.

(b) Show that if

T (z) = eiθ
z − a
1− āz

a ∈ D

then
|T ′(z)|2

(1− |T (z)|2)2
=

1

(1− |z|2)2
.

18. (a) Define

Isom(ds) =

{
T : T (z) = eiθ

z − a
1 + āz

}
∪
{
T : T (z) = −e

iθ

z

}
.

Show that Isom(ds) forms a group under composition.

(b) Define

Aut(D) =

{
T : T (z) = eiθ

z − a
1− āz

a ∈ D
}
.

Show that Aut(D) forms a group under composition.

19. Show that the set of one-to-one, onto analytic maps from D to D is{
T (z) = eiθ

z − a
1− āz

: a ∈ D, θ ∈ [0, 2π)

}
.

To do this proceed as follows:
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(a) Show that the maps T of the above form are one-to-one onto maps of the disc (this follows easily
from properties of Möbius transformations, if you first verify that they take the unit circle |z| = 1
to itself).

(b) If f : D→ D is one such map, there’s an a ∈ D such that f(a) = 0. Let

T (z) =
z − a
1− āz

.

Apply the Schwarz lemma to T ◦ f−1 and f ◦ T−1.

Möbius transformations, rational functions and conformal mapping

20. (a) Find a bijective holomorphic map taking the closure of D = {z : |z| < 1} to the closure of
H = {z : Im(z) > 0} such that −1 maps to −1, −i maps to 0 and 1 maps to 1.

(b) Find a bijective holomorphic map taking D onto A = {z : Re(z) > 0 and Im(z) > 0}.

21. Show that every rational map f(z) = P (z)/Q(z) in lowest terms (that is, so that P and Q have no
common factors) is an n to 1 map from C∞ to C∞, where n = max{deg(P ),deg(Q)}. More precisely,
show that for each p ∈ C∞ there are precisely n solutions to f(z) = p counting multiplicity.

22. In this exercise, you may find the immediately preceding exercise useful. Hint: what is f(1/z)?

(a) What is the image of D under the map f(z) = z + 1/z?

(b) What is the image of D∗ = {z : |z| > 1} ∪ {∞} under the map f(z) = z + 1/z?

(c) Show that f maps circles |z| = R (for R 6= 1) to ellipses x2/a + y2/b = 1. What are a and b in
terms of R?

23. Let z1, z2 and z3 be distinct points in C∞. Show that there is a unique Möbius transformation taking
z1 to 1, z2 to 0 and z3 to ∞.

24. Denote two-by-two complex matrices by M2×2(C). Define

GL(2,C) = {A ∈M2×2(C) : detA 6= 0} ,

SL(2,C) = {A ∈M2×2(C) : detA = 1}

and
PSL(2,C) = SL(2,C)/{±I}.

where the slash denotes the quotient of groups and I is the identity matrix. Let Möb denote the set
of Möbius transformations.

(a) Show that the map

φ : GL(2,C) → Möb(
a b
c d

)
7→ az+b

cz+d .

is a group homomorphism.

(b) Show that PSL(2,C) is isomorphic to the group G = GL(2,C)/{λI : λ ∈ C\{0}}.
(c) Show that Möb and G are isomorphic as groups.

25. (a) Show that every Möbius transformation taking H to H bijectively can be represented as

T (z) =
az + b

cz + d
for a, b, c, d ∈ R.
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(b) Show that the group of Möbius transformations taking H to H bijectively is isomorphic to

PSL(2,R) = SL(2,R)/{±I}.

Hint: it is easier to show that it isomorphic to GL(2,R)/{λI : λ ∈ R\{0}}, and that this latter
group is isomorphic to PSL(2,R).

(c) Show that the group of Möbius transformations taking D to D bijectively is isomorphic to
PSL(2,R).

26. Let D∗ = {z : |z| > 1} ∪ {∞} ⊂ C∞.

(a) Show that J(z) = 1/z is a one-to-one onto meromorphic map from D to D∗.
(b) Let f : C→ D∗ be meromorphic. Show that f is constant.

(c) Show that if f : C→ D is meromorphic, and D is a half-plane or disc in C∞, then f is constant.

27. Find a Möbius transformation T taking D onto D, such that T (0) = i/2 and T ′(0) > 0.

28. Find a one-to-one, onto conformal map f from D to C\(−∞,−1/4] satisfying f(0) = 0 and f ′(0) = 1.
Hint: if you can find a bijective conformal map onto C\(−∞, 0] which takes 0 onto 1/4, you’re almost
there.

29. Find a one-to-one, onto conformal map from D to {z : 0 < arg(z) < π/3}.

30. (a) Show that if f : G→ H is an analytic map between domains G and H, and u is harmonic on H,
then u ◦ f is harmonic on G.

(b) Find a harmonic function on A = {z : 1 < |z| < R} for some R > 1 which extends continuously
to the boundary, is 1 on |z| = R, and is 0 on |z| = 1.

(c) Fix R < 1. Let B be the open set bounded on the outside by the ellipse

x2

a
+
y2

b
= 1

where a = R + 1/R and b = 1/R − R, and on the inside by the line segment y = 0,−2 ≤ y ≤ 2.
Find a harmonic function on B which extends continuously to the closure of B, and which is 1
on the outside boundary and 0 on the inside boundary. Hint: use parts (a) and (b), and find a
suitable map f somewhere in this problem set.

(d) Is the continuous extension harmonic on the domain bounded by the outer ellipse? Why or why
not?

Argument principle and consequences

31. Let f be meromorphic, and let p be a pole of f of order m. Show that the residue of f at p is −m.

32. Use Rouché’s theorem to prove the fundamental theorem of algebra: if p(z) = p0 + p1z+ · · · pnzn with
pn 6= 0, then p has precisely n roots in the plane counting multiplicity. Hint:

lim
z→∞

p(z)− pnzn

pnzn
= 0.

33. Use Rouché’s theorem to find the number of zeros of p(z) = z6 − 5z5 + z2 − 1 in D. Hint: It’s actually
the z5 term that dominates on the circle |z| = 1.
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34. Let G be a domain, and γ a simple closed contour homotopic in G to a point. Let f and h be analytic
on g. Assume f has no zeros on the curve γ, and has zeros ai i = 1, . . . , n enclosed by the curve. Let
m(ai) be their multiplicities. Show that

1

2πi

∫
γ

f ′(z)

f(z)
h(z) dz =

n∑
i=1

h(ai)m(ai).

Hint: mimic the proof of the root-pole counting theorem. (If you wanted to, you could generalize this
result to allow poles and that the curve is not simple).

35. Let p(z) = p0 + p1z + · · · pnzn be a polynomial. Let γ be a circle, traced counter-clockwise, which is
large enough that it encloses all of the roots. Show that

1

2πi

∫
γ

z
p′(z)

p(z)
dz =

q∑
k=1

m(zk)zk

where the sum is over each of the q roots zk and m(zk) is the multiplicity of the root zk.

36. Let G be a domain. Let f be analytic and one-to-one.

(a) Prove that for any z0 ∈ G, the image of f contains an open neighbourhood of f(z0).

(b) Let z0 ∈ G. Prove that there is a small circle γ centred on z0, and a disc B(f(z0, r), so that

f−1(w) =
1

2πi

∫
γ

zf ′(z)

f(z)− w
dz

for all w ∈ B(f(z0, r)). You will need problem 25. (This is called the Bürmann-Lagrange formula).

Topology of spaces of continuous and analytic maps, normal families

37. Prove Lemma 1.5 in Section 7.1.

38. Prove Lemma 2.8 in Section 7.2: F ⊂ H(G) is locally bounded if and only if f(z) is bounded uniformly
on each compact set (in the sense that sup |f(z)| ≤M for all z ∈ K and f ∈ F).

39. Let F be a family of holomorphic functions on an open connected set G, all of which satisfy the
normalization f(z0) = c for some fixed z0 ∈ G. Show that if {f ′ : f ∈ F} is locally bounded, then F
is a normal family in C(G,C).

40. The “Dirichlet integral” or “Dirichlet energy” of a holomorphic function is the integral

‖f‖2 =

∫
D
|f ′|2 <∞.

(a) Define DM = {f ∈ H(D) : ‖f‖ ≤M}. Show that DM is a normal family.

(b) The “Dirichlet space” D is the set of analytic functions on D satisfying f(0) = 0 and ‖f‖ < ∞.
Show that the Dirichlet space is not a normal family in C(D,C). Hint: construct a sequence in D
without a convergent subsequence.

(c) Show that the Dirichlet space is not a normal family in C(D,C∞). Hint: find a sequence of
functions in D such that the spherical derivative is not locally bounded.

41. Let S = {f : D → C : f ∈ H(D), f one-to-one, f(0) = f ′(0)− 1 = 0}. It can be shown that for any
f ∈ S and z ∈ D, the following “growth estimate” holds:

|f(z)| ≤ |z|
(1− |z|)2

.

You may use this freely in the following question.
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(a) Show that S is a normal family.

(b) Show that if fn ∈ S for each n, and fn → f uniformly on compact sets, then f ∈ S. Hint: Show
that f cannot be constant. Then assume f(z1) = f(z2) = α for distinct points z1, z2 ∈ D and use
Hurwitz’ theorem to obtain a contradiction.

(c) Show that S is compact in C(D,C).

(d) Let the functional an : H(D)→ C be defined by

an(f) =
1

n!

fn(0)

f ′(0)

(that is an(f) is the nth coefficient in the Taylor series). Show that

sup
f∈S
|an(f)| <∞†.

Hint: show that the functional an is continuous.

The correct upper bound |an| ≤ n was conjectured∗ by L. Bieberbach in 1916, and not proven
until 1984 by Louis deBranges. Unlike other famous conjectures, almost nothing of interest hinges
on whether or not it is true. On the other hand, like many famous conjectures, the ideas developed
to make progress on the problem are now fundamental in many fields, such as Teichmüller theory,
hyperbolic geometry, complex dynamics, conformal field theory, and stochastic processes. By the
way, the function taking on the upper bound |an| = n is somewhere on this problem set.
∗If you could call it a conjecture: all Bieberbach said was “Vielleicht ist überhaupt kn = n” which
translates as “maybe the upper bound is kn = n” - not exactly a confident proclamation. The
guess was apparently based only on the fact that |a2| ≤ 2. Talk about luck.

† One final remark: the usual derivation of the growth estimate starts with the estimate |a2| ≤ 2,
so one might claim that part (c) is circular (or at least that one must establish the estimate
|a2| ≤ 2 holds before going further). However it is a little-known fact that one can prove the
growth estimate without the estimate on a2.

42. (a) Let g be a holomorphic function on D and let f be holomorphic and one-to-one on D. Assume
that g(0) = f(0) = 0. Let Dr = {z : |z| < r}. Show that if g(D) ⊆ f(D) then g(Dr) ⊂ f(Dr) for
all 0 < r < 1. (This is called the “principle of subordination”). Hint: Use the standard form of
the Schwarz lemma.

Note that this immediately implies that g(clDr) ⊆ f(clDr).
(b) Let P = {p ∈ H(D) : p(0) = 1 and Re(p(z)) > 0}. Show that for p ∈ P, whenever |z| ≤ r

|p(z)| ≤ 1 + r

1− r
.

(In fact, this shows that |p(z)| ≤ (1 + |z|)/(1− |z|) for all z ∈ D.) Hint: set f(z) = (1 + z)/(1− z)
in the previous exercise.

(c) Show that P is a normal family.

43. Let F = {f ∈ H(D) : supz∈D |f ′′(z)| ≤M and f(0) = f ′(0)− 1 = 0}. Show that F is normal.

44. Let p(z) be a polynomial of degree n. Let

F = {f ∈ H(D) : sup
z∈D
|f (n+1)(z)| ≤M and f − p has a zero of order n at 0}.

Show that F is a normal family.

45. Invent and prove a weaker criterion for normality, in the previous two exercises.
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46. The “Bloch norm” of a function f is

‖f‖B = sup
z∈D

(1− |z|2)|f ′(z)|.

(a) Let T : D→ D be a one-to-one onto analytic map. Show that (1− |z|2)|T ′(z)| = 1− |T (z)|2.

(b) Let
FM = {f ∈ H(D) : ‖f‖B ≤M, and f(0) = 0}.

Show that if f ∈ FM then g(z) = f ◦ T (z)− f ◦ T (0) ∈ FM .

(c) Show that FM is a normal family.

47. The “Bloch space” is
B = {f ∈ H(D) : ‖f‖B <∞}

where the norm ‖ · ‖B was given in the previous exercise.

(a) Show that B is not a normal family. (This should be very easy, if you apply the right theorem).

(b) Let
B′ = {f ∈ B : f(0) = 0}.

Show that B′ is not normal either.

(c) Let
Bn = {f ∈ B : f (k)(0) = 0, k = 1, . . . , n}.

Show that Bn is not normal.

After the previous exercise, it should be plausible that no collection of normalizations will shrink B to
a normal family.

48. (a) Show that every hyperbolic disc Bh(a, r) = {z : dh(a, z) < r} for a ∈ D, r > 0, is contained
in a Euclidean disc B(0, R) with R < 1. You may use the triangle inequality for the hyperbolic
(Poincaré) metric.

(b) Show that every Euclidean disc B(a, r) such that B(a, r) ⊂ D is contained in some hyperbolic
disc Bh(0, R) for R <∞.

49. In this exercise and the next one, keep in mind that the definition of equicontinuity of a family (from
Conway and my lectures) depends on the metric of the space your functions map into.

(a) Recall that

µe,s(f)(z) =
2|f ′(z)|

1 + |f(z)|2
.

Show that for a domain G ⊂ C the family

FM = {f : G→ C∞ : µe,s(f)(z) ≤M z ∈ G}

is equicontinuous in C(G,C∞). Don’t use Theorem 3.8.

(b) Recall that
µh,e(f)(z) = (1− |z|2)|f ′(z)|.

Show that the family
BM = {f : D→ C : µh,e(f)(z) ≤M z ∈ D}

is equicontinuous in C(G,C).

(You might be tempted to use Arzela-Ascoli thoerem. This doesn’t work because the family is
not locally bounded, since f ∈ BM ⇒ f + c ∈ BM for any c ∈ C.)
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50. In class, I defined new derivatives, depending on the metric. One of these was the Euclidean-to-spherical
derivative

µe,s(f)(z) =
2|f ′(z)|
1 + |z|2

and another was the hyperbolic-to-Euclidean derivative

µh,e(f)(z) = (1− |z|2)|f ′(z)|.

Now we define a new derivative, hyperbolic to spherical:

µh,s(f)(z) =
2(1− |z|2)|f ′(z)|

1 + |f(z)|2
.

(a) Show that

lim
w→z

ds(f(z), f(w))

dh(z, w)
= µh,s(f)(z),

(b) Show that the family

FM = {f : D→ C∞ : µh,s(f)(z) ≤M ∀z ∈ D}

is normal.

(c) Let F be a family of meromorphic functions on D. Show that if µh,s(f) is locally bounded, then
F is normal in C(D, C∞).

51. Find the exercise on this list of problems that is equivalent to Proposition 3.3 section 7.3 in Conway.

(a) Observe that you have in fact proven this Proposition (provided you did the exercise).

(b) Observe that you have also proven a version of Proposition 3.3 with chordal distance replaced by
spherical distance.

Harmonic functions and the Dirichlet problem

52. Let A(r,R) = {z : r < |z| < R}. Find the general solution u to the Dirichlet problem, with u = β on
the outer boundary and u = α on the inner boundary (α and β are constants).

53. In the previous exercise, set R = 1, α = 1 and β = 0. For fixed z, what happens as r → 0? Try
guessing the limit before you try to find it.

54. Let f be a continuous function on ∂D, and

u(reiθ) =
1

2π

∫ π

π

Pr(θ − t)f(eit)dt

be the solution to the Dirichlet problem with boundary values f . For α fixed define f̃ by f̃(eit) =
f(ei(t+α)) and let ũ(reiθ) be the corresponding solution to the Dirichlet problem with boundary values
f̃ . Show that ũ(reiθ) = u(rei(θ+α)).

55. Conway Exercises X.1.1, X.1.2, X.1.4–X.1.7, X.1.9.

56. Conway Exercises X.2.1, X.2.2 (Hint: just observe that in the proof of Theorem 2.4, only the continuity
of f at eiα is used to show that limz→eiα u(z) = f(eiα)), X.2.4.

57. X.2.5 Hint: you can use removability of singularities for holomorphic mappings, but keep in mind
that the harmonic conjugate might have non-zero periods and thus the resulting holomorphic function
would be multi-valued. If you are a bit sneaky, you can rig up an appropriate single-valued function.

Another approach is the following.
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(a) Let G be an open connected domain and f : ∂∞G → R be a continuous function. Show that if
there is a solution u to the Dirichlet problem for f , then u is the Perron function.

(b) Consider the disk B(a; r) ⊂ C and let B0 = B(a; r)\{a}. Show that there is no harmonic function
on G0 with a continuous extension to clB(a; r) which is zero on ∂B(a; r) and which is non-zero
at a.

Hint: if you could do this, you could certainly find a harmonic function which is one at a and
zero on ∂B(a; r). This contradicts something proven at the very end of section X.3.

(c) Problem X.2.5.

Hint: If clB(a; r) ⊂ G you can solve the Dirichlet problem on B(a; r) with boundary values equal
to u on ∂B(a; r) to obtain a (potentially) new harmonic function v. Apply part (b).

58. X.3.1 (a),(b),(c), X.3.2(a), X.3.4 (Hint: just observe that the continuity of f is never used in the proof;
only the fact that f is bounded).

59. X.5 1(a),(b)(i)(ii), 3.

60. This exercise completes the proof of the special case of the Riemann mapping theorem that I gave in
class. Let G be a simply connected, bounded domain in C, whose boundary is a Jordan curve. Let
g(z, a) be Green’s function of G with singularity at a. (Recall that a Jordan curve is a simple closed
continuous curve in C). Let u(z) = g(z, a) + log |z − a| and v be the complex conjugate of u. Let γ be
a simple closed curve in G, which winds once around a.

(a) Show that ∫
γ

∂u

∂n
ds = 0.

Hint: Use one of the special cases of Green’s identity.

(b) Use exercise 5 in “mapping theorems” to show that the change in v around γ is zero.

61. Show that the following domains are Dirichlet regions.

(a) D\[−1/2, 1/2].

(b) Any domain bounded by n piecewise C1 curves, with a smooth parametrization (i.e. the derivative
does not vanish).

62. Give an example of a domain which is not a Dirichlet region.

63. Let G be a bounded, connected domain. Let h be continuous on ∂G. Let h̃ be the Perron function.

(a) Show that if u solves the Dirichlet problem with boundary values h, then u is in the Perron family
P(h,G). Conclude that u ≤ h̃.

(b) Show that h̃ ≤ u. Conclude that if u solves the Dirichlet problem with boundary values h, then
u is the Perron function.

(c) Thus if G is a Dirichlet domain, then the Perron function solves the Dirichlet problem.

Mapping theorems

64. Conway, exercises VII.4.2, VII.4.6, VII.4.7, VII.4.9.

65. Let f(x+ iy) = u(x, y)+ iv(x, y) be an analytic function of x+ iy. Show that the Jacobian determinant
of the map (x, y)→ (u, v) is

∂(u, v)

∂(x, y)
(x, y) = |f ′(x+ iy)|2.
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66. Let w(u, v) is a harmonic function on a domain D, and let f(x+ iy) = u(x, y) + iv(x, y) be an analytic
function taking a domain G into D satisfying f ′(z) 6= 0. Show that at any point z = x+ iy ∈ G

|∇(w ◦ f)(z)|2 = |(∇w) ◦ f(z)|2|f ′(z)|2.

67. Let γ(t) = x(t) + iy(t) be a simple closed (positively oriented) smooth curve in C. Let n(t) denote the
normal vector at γ(t), pointing in the direction to the right of the direction of motion (that is, to the
right of γ′(t) where the prime denotes differentiation with respect to t). Let u be a C1 function on the
closed set whose boundary is γ. Let

∂u

∂n

denote the directional derivative of u in the direction of n. Show that

∂u

∂n
|γ′(t)| = −∂u

∂y
x′ +

∂u

∂x
y′.

Thus if ds =
√
x′2 + y′2dt = |γ′(t)|dt denotes infinitesimal arc length, we can say that

∂u

∂n
ds = −∂u

∂y
dx+

∂u

∂x
dy.

Hint : The normal is γ′ rotated by π/2 clockwise. Use this to show that

n(t) =
1√

x′(t)2 + y′(t)2
(y′(t),−x′(t)).

68. Let f = u + iv be a holomorphic function on a domain G. Let γ be a smooth curve in G, with
end-points z0 and z1 in that order. Show that∫

γ

∂u

∂n
ds = v(z1)− v(z0).

Hint: Apply the Cauchy-Riemann equations.

69. Let G be a piecewise smoothly (C2) bounded domain in C with four distinguished points z0, z1, z2, z3,
whose ordering traces around ∂G counter-clockwise. Assume G is bounded by four smooth curves
C1, . . . , C4, where C1 joins z0 to z1, C2 joins z1 to z2, etc; and that C1 + C2 + C3 + C4 is positively
oriented with respect to G. Assume that you can solve the following boundary value problem: there is
a u such that u is harmonic on G, u has a C2 extension to clG, u = 0 on C1, u = 1 on C3, ∂u/∂n = 0
on C2 and C4. (This means: if t 7→ x(t) + iy(t) is any smooth parametrization of C2 or C4, then

−∂u
∂y
x′ +

∂u

∂x
y′ = 0.)

(a) Let v be the harmonic conjugate of u on G which is zero at z1. Show that v is constant on C2

and C4, and ∂v/∂n = 0 on C1 and C2. You may assume that u and v are C1 up to the boundary.
Hint: use the Cauchy-Riemann equations.

(b) Show that f = u + iv is one-to-one. Conclude that there is a one-to-one analytic map from G
onto a rectangle

R = {u+ iv : 0 < u < 1 and 0 < v < r}

for some R > 0, which takes z0, z1, z2, z3 onto ri, 0, 1, 1 + ri in that order. Hint: Show that for
any w0 ∈ R, the change in argument of f(z)− w0 around ∂G is 2π.
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(c) Define the energy of the domain G with distinguished points z0, . . . , z3 to be

E(G, z0, . . . , z3) =

∫ ∫
G

|∇u|2 dA

where u is the solution of the boundary value problem described above. Compute r in terms of
E(G). Hint: first compute ∫

C3

∂u

∂n
ds.

After that, you’ll need to apply Green’s identity to the double integral and make use of the
boundary values of u.

70. Let Rr = {x + iy : 0 < u < 1 and 0 < v < r}, and let z0 = ir, z1 = 0, z2 = 1, z3 = 1 + ir. Let
C1, . . . , C4 be as in the previous question.

(a) What is the solution on Rr to the boundary value problem in the previous question? (Set G = Rr;
the distinguished points and curves are described above).

(b) Find the energy E(Rr, z0, . . . , z3).

(c) Show that you can map any rectangle S with corners w0, . . . , w4 onto Rr, so that wi maps to zi,
with a one-to-one analytic map if

r =
length of side w3w2

length of side w2w1
.

(d) Show that if there is a one-to-one analytic map f from S onto Rr, then E(S,w0, . . . , w3) =
E(Rr, z0, . . . , z3). Hint: if u is the solution to the boundary value problem on Rr then u ◦ f is
the solution to the boundary value problem on S. You may assume that f extends continuously
to the boundary of S.

(e) Conclude that the condition in part (c) is in fact necessary for the existence of a one-to-one
analytic onto map from S to Rr which takes zi to wi.
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