Polar Coordinates

MATH 1700

Readings

Section 10.3, 10.4

What are polar coordinates?

We can specify the location of a point (x, y) using its distance to the origin r and the angle θ between the ray through $(0,0)$ and (x, y) and the x-axis.

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

and

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
\tan \theta & =\frac{y}{x} .
\end{aligned}
$$

What are polar coordinates?

We can specify the location of a point (x, y) using its distance to the origin r and the angle θ between the ray through $(0,0)$ and (x, y) and the x-axis.

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

and

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
\tan \theta & =\frac{y}{x} .
\end{aligned}
$$

Warning \# 1: we allow r to be negative! Warning \# 2: there are many choices of (r, θ) for a given (x, y) !

Polar curves

An equation involving r and θ describes a set of points in the plane which satisfy that equation. This is called a polar curve. They are often written $r=f(\theta)$ (but not always).

Symmetries of polar curves

If a polar equation has an algebraic property, this can indicate a symmetry of the corresponding polar curve.
(1) If the equation is unchanged when θ is replaced by $-\theta$, then the curve is symmetric about the polar axis (what would be the x-axis).
(2) If the equation is unchanged when r is replaced by $-r$, then the curve is symmetric about the origin.
(3) If the equation is unchanged when θ is replaced by $\pi-\theta$, then the curve is symmetric about the ray $\theta=\pi / 2$ (what would be the y-axis).

Tangents to polar curves

If $r=f(\theta)$, then we can write

$$
x=f(\theta) \cos \theta, \quad y=f(\theta) \sin \theta
$$

So the slope of the tangent is (note $d r / d \theta=f^{\prime}(\theta)$:

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

Tangents to polar curves

If $r=f(\theta)$, then we can write

$$
x=f(\theta) \cos \theta, \quad y=f(\theta) \sin \theta
$$

So the slope of the tangent is (note $d r / d \theta=f^{\prime}(\theta)$:

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

Special cases:

1. If $d x / d \theta=0$ and $d y / d \theta \neq 0$ then the tangent is vertical
2. If $d y / d \theta=0$ and $d x / d \theta \neq 0$ then the tangent is horizontal
3. At the origin $r=0$, we have $d y / d x=\tan \theta$ so long as $d r / d \theta \neq 0$.

Area of a polar curve

Let $r=f(\theta)$ be a polar curve.

Area of a polar curve

Let $r=f(\theta)$ be a polar curve.
The area swept out by a polar curve between $\theta=a$ and $\theta=b$

$$
A=\int_{a}^{b} \frac{1}{2} r^{2} d \theta=\int_{a}^{b} \frac{1}{2} f(\theta)^{2} d \theta
$$

Area between two polar curves

Let $r=f(\theta)$ and $r=g(\theta)$ are polar curves, such that $f(\theta) \geq g(\theta)$.

Area between two polar curves

Let $r=f(\theta)$ and $r=g(\theta)$ are polar curves, such that $f(\theta) \geq g(\theta)$.
The area between these curves between $\theta=a$ and $\theta=b$ is

$$
A=\int_{a}^{b} \frac{1}{2}\left(f(\theta)^{2}-g(\theta)^{2}\right) d \theta
$$

Arc length of a polar curve

Let $r=f(\theta), a \leq \theta \leq b$ be a polar curve. This can be thought of as a parametric curve with $x=r \cos \theta, y=r \sin \theta$.

A bit of computation using the arc length formula for parametric curves gives us

$$
L=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

