

Polar Coordinates

MATH 1700

Readings

Section 10.3, 10.4

What are polar coordinates?

We can specify the location of a point (x, y) using its distance to the origin *r* and the angle θ between the ray through (0, 0) and (x, y) and the *x*-axis.

 $x = r \cos \theta$ $y = r \sin \theta$

and

$$r^2 = x^2 + y^2$$
$$\tan \theta = \frac{y}{x}.$$

What are polar coordinates?

We can specify the location of a point (x, y) using its distance to the origin r and the angle θ between the ray through (0, 0) and (x, y) and the x-axis.

 $x = r \cos \theta$ $y = r \sin \theta$

and

$$r^2 = x^2 + y^2$$

$$\tan \theta = \frac{y}{x}.$$

Warning # 1: we allow *r* to be negative! **Warning # 2**: there are many choices of (r, θ) for a given (x, y)!

MATH 1700

Polar curves

An equation involving *r* and θ describes a set of points in the plane which satisfy that equation. This is called a **polar curve**. They are often written $r = f(\theta)$ (but not always).

Symmetries of polar curves

If a polar equation has an algebraic property, this can indicate a symmetry of the corresponding polar curve.

- If the equation is unchanged when θ is replaced by $-\theta$, then the curve is symmetric about the polar axis (what would be the *x*-axis).
- 2 If the equation is unchanged when r is replaced by -r, then the curve is symmetric about the origin.
- If the equation is unchanged when θ is replaced by π θ, then the curve is symmetric about the ray θ = π/2 (what would be the y-axis).

Tangents to polar curves

If $r = f(\theta)$, then we can write

$$x = f(\theta) \cos \theta$$
, $y = f(\theta) \sin \theta$.

So the slope of the tangent is (note $dr/d\theta = f'(\theta)$:

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}.$$

Tangents to polar curves

If $r = f(\theta)$, then we can write

$$x = f(\theta) \cos \theta$$
, $y = f(\theta) \sin \theta$.

So the slope of the tangent is (note $dr/d\theta = f'(\theta)$:

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}.$$

Special cases:

1. If $dx/d\theta = 0$ and $dy/d\theta \neq 0$ then the tangent is vertical 2. If $dy/d\theta = 0$ and $dx/d\theta \neq 0$ then the tangent is horizontal 3. At the origin r = 0, we have $dy/dx = \tan \theta$ so long as $dr/d\theta \neq 0$.

Area of a polar curve

Let $r = f(\theta)$ be a polar curve.

Area of a polar curve

Let $r = f(\theta)$ be a polar curve.

The area swept out by a polar curve between $\theta = a$ and $\theta = b$

$$A = \int_a^b \frac{1}{2}r^2 d\theta = \int_a^b \frac{1}{2}f(\theta)^2 d\theta.$$

Area between two polar curves

Let $r = f(\theta)$ and $r = g(\theta)$ are polar curves, such that $f(\theta) \ge g(\theta)$.

Area between two polar curves

Let $r = f(\theta)$ and $r = g(\theta)$ are polar curves, such that $f(\theta) \ge g(\theta)$. The area between these curves between $\theta = a$ and $\theta = b$ is

$$A = \int_a^b \frac{1}{2} \left(f(\theta)^2 - g(\theta)^2 \right) d\theta.$$

Arc length of a polar curve

Let $r = f(\theta)$, $a \le \theta \le b$ be a polar curve. This can be thought of as a parametric curve with $x = r \cos \theta$, $y = r \sin \theta$.

A bit of computation using the arc length formula for parametric curves gives us

$$L = \int_{a}^{b} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta.$$