Curves defined parametrically

MATH 1700

Readings

Section 10.1, Section 10.2.

What is a parametric curve?

A parametric curve is a pair of functions

$$
x=f(t), \quad y=g(t) \quad a<t<b
$$

which describe the coordinates of a point in the plane.

What is a parametric curve?

A parametric curve is a pair of functions

$$
x=f(t), \quad y=g(t) \quad a<t<b
$$

which describe the coordinates of a point in the plane.

As t varies over the interval, $(x, y)=(f(t), g(t))$ traces out a curve.

Three facts about parametric curves

Fact \# 1: One curve has many "parametrizations". In other words, the same shape of curve is traced out by many choices of functions $(f(t), g(t))$.

Three facts about parametric curves

Fact \# 1: One curve has many "parametrizations". In other words, the same shape of curve is traced out by many choices of functions $(f(t), g(t))$.

Fact \#2: Any graph can be written parametrically: If $y=F(x)$ on the interval (a, b) we can write

$$
(x(t), y(t))=(t, F(t)) \quad a<t<b .
$$

Three facts about parametric curves

Fact \# 1: One curve has many "parametrizations". In other words, the same shape of curve is traced out by many choices of functions $(f(t), g(t))$.

Fact \#2: Any graph can be written parametrically: If $y=F(x)$ on the interval (a, b) we can write

$$
(x(t), y(t))=(t, F(t)) \quad a<t<b .
$$

Fact \#3: Parametric curves do not have to be graphs of functions.

Tangents

Assuming that $d x / d t=f^{\prime}(t) \neq 0$, we can compute the slope

$$
\text { slope }=\frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

Vertical tangent: occurs if $d x / d t=0$ but $d y / d t \neq 0$. Horizontal tangent: occurs if $d y / d t=0$ but $d x / d t \neq 0$.

Convexity

If $d x / d t=f^{\prime}(t) \neq 0$, then we can compute the derivative of the slope as follows:

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\left[\frac{d}{d t} \frac{d y}{d x}\right] / \frac{d x}{d t}
$$

Convexity

If $d x / d t=f^{\prime}(t) \neq 0$, then we can compute the derivative of the slope as follows:

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\left[\frac{d}{d t} \frac{d y}{d x}\right] / \frac{d x}{d t}
$$

The curve is concave up: when $d^{2} y / d x^{2}>0$ The curve is concave down: when $d^{2} y / d x^{2}<0$.

Area under a parametric curve

Let $x=f(t), y=g(t), \alpha \leq t \leq \beta$ be a parametric curve.
Assume $a=f(\alpha)<b=f(\beta)$.
The area under the curve and above the x-axis is

$$
A=\int_{a}^{b} y d x=\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t
$$

If on the other hand $a=f(\beta)<b=f(\alpha)$, then the area is given by

$$
A=\int_{a}^{b} y d x=\int_{\beta}^{\alpha} g(t) f^{\prime}(t) d t
$$

Definition of arc length of a parametric curve

Definition

Let $x=f(t), y=g(t)$ be a parametric curve such that f^{\prime} and g^{\prime} are continuous on $[\alpha, \beta]$. Assume that the curve is traced exactly once as t increases from α to β. The length of the curve between α and β is

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Why is this a good definition?

The length can be approximated by straight lines:

$$
\begin{aligned}
L & \cong \sum_{i=1}^{n} \sqrt{\Delta x_{i}^{2}+\Delta y_{i}^{2}} \\
& =\sum_{i=1}^{n} \sqrt{f^{\prime}\left(t_{i}^{*}\right)^{2}(\Delta t)^{2}+g^{\prime}\left(t_{i}^{* *}\right)^{2}(\Delta t)^{2}} \quad \text { (using MVT) } \\
& =\sum_{i=1}^{n} \sqrt{f^{\prime}\left(t_{i}^{*}\right)^{2}+g^{\prime}\left(t_{i}^{* *}\right)^{2}} \Delta t_{i}
\end{aligned}
$$

Why is this a good definition?

The length can be approximated by straight lines:

$$
\begin{aligned}
L & \cong \sum_{i=1}^{n} \sqrt{\Delta x_{i}^{2}+\Delta y_{i}^{2}} \\
& =\sum_{i=1}^{n} \sqrt{f^{\prime}\left(t_{i}^{*}\right)^{2}(\Delta t)^{2}+g^{\prime}\left(t_{i}^{* *}\right)^{2}(\Delta t)^{2}} \quad \text { (using MVT) } \\
& =\sum_{i=1}^{n} \sqrt{f^{\prime}\left(t_{i}^{*}\right)^{2}+g^{\prime}\left(t_{i}^{* *}\right)^{2}} \Delta t_{i}
\end{aligned}
$$

The actual length is the limit:

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{f^{\prime}\left(t_{i}^{*}\right)^{2}+g^{\prime}\left(t_{i}^{* *}\right)^{2}} \Delta t_{i}=\int_{\alpha}^{\beta} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t
$$

Surface area of a parametric curve

Let $x=f(t), y=g(t), \alpha \leq t \leq \beta$ be a parametric curve. Consider the surface obtained by rotating the curve around the x-axis.

Surface area of a parametric curve

Let $x=f(t), y=g(t), \alpha \leq t \leq \beta$ be a parametric curve. Consider the surface obtained by rotating the curve around the x-axis.

The surface area is

$$
\begin{aligned}
S & =\int_{\alpha}^{\beta} 2 \pi y d s \\
& =\int_{\alpha}^{\beta} 2 \pi y(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{\alpha}^{\beta} 2 \pi y(t) \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t
\end{aligned}
$$

