

## Curves defined parametrically

MATH 1700

MATH 1700

## Readings

Section 10.1, Section 10.2.

# What is a parametric curve?

#### A parametric curve is a pair of functions

$$x = f(t), y = g(t) a < t < b$$

which describe the coordinates of a point in the plane.

# What is a parametric curve?

A parametric curve is a pair of functions

$$x = f(t), \quad y = g(t) \quad a < t < b$$

which describe the coordinates of a point in the plane.

As *t* varies over the interval, (x, y) = (f(t), g(t)) traces out a curve.

## Three facts about parametric curves

**Fact # 1**: One curve has many "parametrizations". In other words, the same shape of curve is traced out by many choices of functions (f(t), g(t)).

# Three facts about parametric curves

**Fact # 1**: One curve has many "parametrizations". In other words, the same shape of curve is traced out by many choices of functions (f(t), g(t)).

**Fact #2**: Any graph can be written parametrically: If y = F(x) on the interval (a, b) we can write

$$(x(t), y(t)) = (t, F(t)) \quad a < t < b.$$

# Three facts about parametric curves

**Fact # 1**: One curve has many "parametrizations". In other words, the same shape of curve is traced out by many choices of functions (f(t), g(t)).

**Fact #2**: Any graph can be written parametrically: If y = F(x) on the interval (a, b) we can write

$$(x(t), y(t)) = (t, F(t)) \quad a < t < b.$$

Fact #3: Parametric curves do not have to be graphs of functions.

#### Tangents

Assuming that  $dx/dt = f'(t) \neq 0$ , we can compute the slope

$$slope = rac{dy}{dx} = rac{dy/dt}{dx/dt}.$$

Vertical tangent: occurs if dx/dt = 0 but  $dy/dt \neq 0$ . Horizontal tangent: occurs if dy/dt = 0 but  $dx/dt \neq 0$ .

# Convexity

If  $dx/dt = f'(t) \neq 0$ , then we can compute the derivative of the slope as follows:

$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right) = \left[ \frac{d}{dt} \frac{dy}{dx} \right] / \frac{dx}{dt}$$

# Convexity

If  $dx/dt = f'(t) \neq 0$ , then we can compute the derivative of the slope as follows:

$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right) = \left[ \frac{d}{dt} \frac{dy}{dx} \right] / \frac{dx}{dt}.$$

The curve is concave up: when  $d^2y/dx^2 > 0$ The curve is concave down: when  $d^2y/dx^2 < 0$ .

#### Area under a parametric curve

Let x = f(t), y = g(t),  $\alpha \le t \le \beta$  be a parametric curve. Assume  $a = f(\alpha) < b = f(\beta)$ .

The area under the curve and above the *x*-axis is

$$A = \int_a^b y dx = \int_{\alpha}^{\beta} g(t) f'(t) dt.$$

If on the other hand  $a = f(\beta) < b = f(\alpha)$ , then the area is given by

$$A = \int_a^b y dx = \int_\beta^\alpha g(t) f'(t) dt.$$

## Definition of arc length of a parametric curve

#### Definition

Let x = f(t), y = g(t) be a parametric curve such that f' and g' are continuous on  $[\alpha, \beta]$ . Assume that the curve is traced exactly once as t increases from  $\alpha$  to  $\beta$ . The length of the curve between  $\alpha$  and  $\beta$  is

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

# Why is this a good definition?

The length can be approximated by straight lines:

$$L \cong \sum_{i=1}^{n} \sqrt{\Delta x_i^2 + \Delta y_i^2}$$
  
=  $\sum_{i=1}^{n} \sqrt{f'(t_i^*)^2 (\Delta t)^2 + g'(t_i^{**})^2 (\Delta t)^2}$  (using MVT)  
=  $\sum_{i=1}^{n} \sqrt{f'(t_i^*)^2 + g'(t_i^{**})^2} \Delta t_i.$ 

# Why is this a good definition?

The length can be approximated by straight lines:

$$\begin{split} L &\cong \sum_{i=1}^{n} \sqrt{\Delta x_{i}^{2} + \Delta y_{i}^{2}} \\ &= \sum_{i=1}^{n} \sqrt{f'(t_{i}^{*})^{2} (\Delta t)^{2} + g'(t_{i}^{**})^{2} (\Delta t)^{2}} \quad \text{(using MVT)} \\ &= \sum_{i=1}^{n} \sqrt{f'(t_{i}^{*})^{2} + g'(t_{i}^{**})^{2}} \Delta t_{i}. \end{split}$$

The actual length is the limit:

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{f'(t_i^*)^2 + g'(t_i^{**})^2} \Delta t_i = \int_{\alpha}^{\beta} \sqrt{f'(t)^2 + g'(t)^2} dt.$$

# Surface area of a parametric curve

Let x = f(t), y = g(t),  $\alpha \le t \le \beta$  be a parametric curve. Consider the surface obtained by rotating the curve around the *x*-axis.

# Surface area of a parametric curve

Let x = f(t), y = g(t),  $\alpha \le t \le \beta$  be a parametric curve. Consider the surface obtained by rotating the curve around the *x*-axis.

The surface area is

$$S = \int_{\alpha}^{\beta} 2\pi y \, ds$$
$$= \int_{\alpha}^{\beta} 2\pi y(t) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$
$$= \int_{\alpha}^{\beta} 2\pi y(t) \sqrt{f'(t)^2 + g'(t)^2} dt$$