Title

Indefinite Integrals and the Net Change Theorem

MATH 1700

Readings

Readings: Section 5.4

What is an indefinite integral?

An **indefinite integral** of a function *f* is an anti-derivative of *f*, and is denoted $\int f(x) dx$. That is:

$$\int f(x)dx = F(x)$$
 means $F'(x) = f(x)$

What is an indefinite integral?

An **indefinite integral** of a function *f* is an anti-derivative of *f*, and is denoted $\int f(x)dx$. That is:

$$\int f(x)dx = F(x)$$
 means $F'(x) = f(x)$

Convention #1: We always write all anti-derivatives. E.g.

$$\int x dx = \frac{1}{2}x^2 + C$$

What is an indefinite integral?

An **indefinite integral** of a function *f* is an anti-derivative of *f*, and is denoted $\int f(x)dx$. That is:

$$\int f(x)dx = F(x)$$
 means $F'(x) = f(x)$

Convention #1: We always write all anti-derivatives. E.g.

$$\int x dx = \frac{1}{2}x^2 + C$$

Convention #2: The formula for an anti-derivative is always expressed on a single interval.

Table of indefinite integrals

1.
$$\int cf(x)dx = c \int f(x)dx$$

2.
$$\int (f(x)dx + g(x)dx) = \int f(x)dx + \int g(x)dx$$

3.
$$\int kdx = kx + C$$

4.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \text{ for } n \neq -1$$

5.
$$\int \frac{1}{x}dx = \ln |x| + C$$

6.
$$\int e^x dx = e^x + C$$

7.
$$\int a^x dx = \frac{a^x}{\ln a} + C$$

Table of more indefinite integrals

8.
$$\int \sin x dx = -\cos x + C$$

9.
$$\int \cos x dx = \sin x + C$$

10.
$$\int \sec^2 x dx = \tan x + C$$

11.
$$\int \csc^2 x dx = -\cot x + C$$

12.
$$\int \sec x \tan x dx = \sec x + C$$

13.
$$\int \csc x \cot x dx = -\csc x + C$$

С

Table of still more indefinite integrals

$$14. \int \frac{1}{x^2 + 1} dx = \tan^{-1} x + C$$

$$15. \int \frac{1}{\sqrt{1 - x^2}} dx = \sin^{-1} x + C$$

$$16. \int \sinh x dx = \cosh x + C$$

$$17. \int \cosh x dx = \sinh x + C.$$

The Net Change Theorem

Theorem

The integral of a rate of change is the net change:

$$\int_a^b F'(x) dx = F(b) - F(a).$$

The Net Change Theorem

Theorem

The integral of a rate of change is the net change:

$$\int_a^b F'(x) dx = F(b) - F(a).$$

This isn't really a new theorem, it's just the Fundamental Theorem of Calculus Part II stated differently.