Solving an inequality

Problem: Find the set of all x satisfying $|2x - 4| \le |3x|$.

Solution: Let $S = \{x : |2x - 4| \le |3x|\}.$

There are three cases, $x \leq 0, 0 < x < 2$, and $2 \leq x$.

<u>Case I</u>: $x \le 0$. In this case, |3x| = -3x, and |2x - 4| = 4 - 2x since $2x - 4 \le -4 < 0$. So (assuming throughout that $x \le 0$)

$$|2x - 4| \le |3x| \Leftrightarrow 4 - 2x < -3x \Leftrightarrow x < -4.$$

So $x \leq 0$ and $x \in S$ if and only if x < -4.

<u>Case II</u>: 0 < x < 2. In this case, |3x| = 3x, and |2x - 4| = 4 - 2x because 2x < 4 so 2x - 4 < 0. So (assuming throughout that 0 < x < 2)

$$|2x - 4| \le |3x| \Leftrightarrow 4 - 2x < 3x \Leftrightarrow 4 < 5x \Leftrightarrow x < 4/5.$$

So 0 < x < 2 and $x \in S$ if and only if 4/5 < x < 2.

<u>Case III</u>: $2 \le x$. In this case, |3x| = 3x, and |2x - 4| = 2x - 4 because $2x \ge 4$ so $2x - 4 \ge 0$. So (assuming throughout that $2 \le x$)

$$|2x - 4| \le |3x| \Leftrightarrow 2x - 4 < 3x \Leftrightarrow x > -4$$

which is always satisfied for $x \ge 2$. So $2 \ge x$ and $x \in S$ if and only if $x \ge 2$.

Since these are the only three cases, we have shown that $|2x - 4| \le |3x|$ if and only if x > 4/5 or x < -4. That is, $S = (-\infty, -4) \cup (4/5, \infty)$.