Solving an inequality

Problem: Find the set of all x satisfying $|2 x-4| \leq|3 x|$.

Solution: Let $S=\{x:|2 x-4| \leq|3 x|\}$.
There are three cases, $x \leq 0,0<x<2$, and $2 \leq x$.
Case I: $x \leq 0$. In this case, $|3 x|=-3 x$, and $|2 x-4|=4-2 x$ since $2 x-4 \leq-4<0$. So (assuming throughout that $x \leq 0$)

$$
|2 x-4| \leq|3 x| \Leftrightarrow 4-2 x<-3 x \Leftrightarrow x<-4 .
$$

So $x \leq 0$ and $x \in S$ if and only if $x<-4$.
Case II: $0<x<2$. In this case, $|3 x|=3 x$, and $|2 x-4|=4-2 x$ because $2 x<4$ so $2 x-4<0$. So (assuming throughout that $0<x<2$)

$$
|2 x-4| \leq|3 x| \Leftrightarrow 4-2 x<3 x \Leftrightarrow 4<5 x \Leftrightarrow x<4 / 5 \text {. }
$$

So $0<x<2$ and $x \in S$ if and only if $4 / 5<x<2$.
Case III: $2 \leq x$. In this case, $|3 x|=3 x$, and $|2 x-4|=2 x-4$ because $2 x \geq 4$ so $2 x-4 \geq 0$. So (assuming throughout that $2 \leq x$)

$$
|2 x-4| \leq|3 x| \Leftrightarrow 2 x-4<3 x \Leftrightarrow x>-4
$$

which is always satisfied for $x \geq 2$. So $2 \geq x$ and $x \in S$ if and only if $x \geq 2$.
Since these are the only three cases, we have shown that $|2 x-4| \leq|3 x|$ if and only if $x>4 / 5$ or $x<-4$. That is, $S=(-\infty,-4) \cup(4 / 5, \infty)$.

