The Definite Integral

MATH 1700

Readings

Section 5.2

The definition of area

Definition (Riemann)

Let f be a function on $[a, b]$. For some integer $n>0$ let $x_{0}=a$ and $x_{i}=a+i \Delta x$. Choose x_{i}^{*} such that $x_{i-1} \leq x_{i}^{*} \leq x_{i}$. Then the integral of f over $[a, b]$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

provided that this limit exists. If the limit exists f is called integrable over $[a, b]$.

Actually this is not quite the precise definition, but it's good enough for this course.

The definition of area

Definition (Riemann)

Let f be a function on $[a, b]$. For some integer $n>0$ let $x_{0}=a$ and $x_{i}=a+i \Delta x$. Choose x_{i}^{*} such that $x_{i-1} \leq x_{i}^{*} \leq x_{i}$. Then the integral of f over $[a, b]$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

provided that this limit exists. If the limit exists f is called integrable over $[a, b]$.

Actually this is not quite the precise definition, but it's good enough for this course.
Idea: in the limit, the approximation by rectangles goes to the actual net area!

When is f integrable?

This is a very hard question in general. For us, this is enough:

Theorem

If f is continuous on $[a, b]$, or if f has only a finite number of jump discontinuities on $[a, b]$, then f is integrable on $[a, b]$.

When is f integrable?

This is a very hard question in general. For us, this is enough:

Theorem

If f is continuous on $[a, b]$, or if f has only a finite number of jump discontinuities on $[a, b]$, then f is integrable on $[a, b]$.

Theorem

If f is integrable on $[a, b]$, then we can use the limit of the left or right sum (or any other choice of points) to evaluate the integral. E.g. for $x_{i}=x_{0}+i \Delta x$

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Important geometric intuition

The integral represents the net area between the curve and the x-axis, with the important qualification that

Important geometric intuition

The integral represents the net area between the curve and the x-axis, with the important qualification that
if f dips below the x axis, (i.e. $f(x)<0$), then the area of that portion counts as negative.

Important geometric intuition

The integral represents the net area between the curve and the x-axis, with the important qualification that
if f dips below the x axis, (i.e. $f(x)<0$), then the area of that portion counts as negative.

You can use this to compute integrals of some functions, if you know the area of the shape already.

What if $a \geq b$?

If $a \geq b$, then we define

$$
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

(In some sense, this follows from the definition given earlier, since $\Delta x=(b-a) / n<0$; we're just removing the implicit assumption that $b>$ a.)

What if $a \geq b ?$

If $a \geq b$, then we define

$$
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

(In some sense, this follows from the definition given earlier, since $\Delta x=(b-a) / n<0$; we're just removing the implicit assumption that $b>a$.)
If $a=b$ then it follows from the definition (since $\Delta x=0$) that

$$
\int_{a}^{a} f(x) d x=0
$$

Properties of the Definite Integral

Assuming that the integrals below exist,

$$
\begin{aligned}
& \text { 1. } \int_{a}^{b} c d x=c(b-a) \quad \text { for any constant } c \\
& \text { 2. } \int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \\
& \text { 3. } \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x \quad \text { for any constant } c \\
& \text { 4. } \int_{a}^{b}(f(x)-g(x)) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x
\end{aligned}
$$

More properties

$$
\text { 5. } \int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x
$$

More properties

6. If $f(x) \geq 0$ for all $a \leq x \leq b$ then

$$
\int_{a}^{b} f(x) d x>0
$$

7. If $f(x) \geq g(x)$ for all $a \leq x \leq b$ then

$$
\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x
$$

8. If $m \leq f(x) \leq M$ for all $a \leq x \leq b$ then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

