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The Definite Integral

The definition of area

Definition (Riemann)

Let f be a function on [a,b]. For some integer n > 0 let x0 = a and
xi = a + i∆x . Choose x∗i such that xi−1 ≤ x∗i ≤ xi . Then the integral
of f over [a,b] is ∫ b

a
f (x)dx = lim

n→∞

n∑
i=1

f (x∗i )∆x

provided that this limit exists. If the limit exists f is called integrable
over [a,b].

Actually this is not quite the precise definition, but it’s good enough for
this course.

Idea: in the limit, the approximation by rectangles goes to the actual
net area!
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The Definite Integral

When is f integrable?

This is a very hard question in general. For us, this is enough:

Theorem
If f is continuous on [a,b], or if f has only a finite number of jump
discontinuities on [a,b], then f is integrable on [a,b].

Theorem
If f is integrable on [a,b], then we can use the limit of the left or right
sum (or any other choice of points) to evaluate the integral. E.g. for
xi = x0 + i∆x ∫ b

a
f (x)dx = lim

n→∞

n∑
i=1

f (xi)∆x .
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The Definite Integral

Important geometric intuition

The integral represents the net area between the curve and the x-axis,

with the important qualification that

if f dips below the x axis, (i.e. f (x) < 0), then the area of that portion
counts as negative.

You can use this to compute integrals of some functions, if you know
the area of the shape already.
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The Definite Integral

What if a ≥ b?

If a ≥ b, then we define∫ b

a
f (x)dx = −

∫ a

b
f (x)dx .

(In some sense, this follows from the definition given earlier, since
∆x = (b − a)/n < 0; we’re just removing the implicit assumption that
b > a.)

If a = b then it follows from the definition (since ∆x = 0) that∫ a

a
f (x)dx = 0.
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The Definite Integral

Properties of the Definite Integral

Assuming that the integrals below exist,

1.
∫ b

a
cdx = c(b − a) for any constant c

2.
∫ b

a
(f (x) + g(x))dx =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx .

3.
∫ b

a
cf (x)dx = c

∫ b

a
f (x)dx for any constant c

4.
∫ b

a
(f (x) − g(x))dx =

∫ b

a
f (x)dx −

∫ b

a
g(x)dx .
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The Definite Integral

More properties

5.
∫ c

a
f (x)dx +

∫ b

c
f (x)dx =

∫ b

a
f (x)dx .
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The Definite Integral

More properties

6. If f (x) ≥ 0 for all a ≤ x ≤ b then∫ b

a
f (x)dx > 0.

7. If f (x) ≥ g(x) for all a ≤ x ≤ b then∫ b

a
f (x)dx ≥

∫ b

a
g(x)dx .

8. If m ≤ f (x) ≤ M for all a ≤ x ≤ b then

m(b − a) ≤
∫ b

a
f (x)dx ≤ M(b − a).
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