MATH 2080 F18 Assignment 4

Due Date: Monday December 3rd, in lecture

Important:

- Just working on the problem sets is insufficient. You should be doing plenty of exercises from the book and lecture on your own.
- The questions are taken from the fourth edition of Bartle and Sherbert, and the numbering has changed. If you have an earlier edition, please consult with me or with a classmate to make sure that you have the right question. If you do the wrong question you will not receive credit.

1. (a) Find a condition on $|x-3|$ which guarantees that $\left|x^{3}-27\right|<1 / 100$. Clearly state and prove your claim.
(b) Find a condition on $|x-3|$ which guarantees that $\left|x^{3}-27\right|<\epsilon$. Clearly state and prove your claim.
2. (a) Show that if $|x-3|<1 / 2$ then $|x-10|<15 / 2$ and $|x-2|>1 / 2$.
(b) Let

$$
f(x)=\frac{x^{2}+4}{x-2}
$$

with domain $\mathbb{R} \backslash\{2\}$. Prove that

$$
\lim _{x \rightarrow 3} \frac{x^{2}+4}{x-2}=13
$$

directly from the definition of limit. Do NOT use any limit theorems.
3. Use a sequential argument to show that the following limits do not exist.
(a)

$$
\lim _{x \rightarrow \sqrt{5}} \frac{1}{x^{2}-5}
$$

(b)

$$
\lim _{x \rightarrow 0} \cos \left(1 / x^{2}\right) .
$$

4. Section 4.2, Question 11 (d). Give a proof that the limit is zero.
5. Use the algebraic limit theorems to show that

$$
\lim _{x \rightarrow 2} \frac{x^{2}+3 x+1}{x^{2}+2 x}=\frac{11}{8} .
$$

