MATH 2080 F18 Assignment 3

Due Date: Monday November 19th, in lecture

Important:

- Just working on the problem sets is insufficient. You should be doing plenty of exercises from the book and lecture on your own.
- The questions are taken from the fourth edition of Bartle and Sherbert, and the numbering has changed. If you have an earlier edition, please consult with me or with a classmate to make sure that you have the right question. If you do the wrong question you will not receive credit.
- 1. Let $X = (x_n)$ be a convergent sequence such that $x_n \ge 3$ for all $n \in \mathbb{N}$. Assume that

$$\lim \frac{x_n^2}{3x_n - 4} = 2$$

Prove that $\lim X = 4$.

- 2. Let $(X) = (x_n)$ be the sequence defined recursively by $x_1 = 1$ and $x_{n+1} = \sqrt{x_n + 12}$ for all $n \in \mathbb{N}$ such that $n \ge 1$.
 - (a) Use induction to show that the sequence is bounded above by 4.
 - (b) Prove that the limit exists.
 - (c) Evaluate the limit (with a proof).
- 3. Section 3.3 # 9. (third edition, same number).
- 4. Consider the sequence

$$a_n = 1 + \cos(\pi n), \quad n \in \mathbb{N}.$$

Show that (a_n) does not converge. *Hint*: give a simple proof, using a theorem in Section 3.4.

- 5. Let $a_n = \sin(n^2)$ for $n \in \mathbb{N}$. Does (a_n) have a convergent subsequence? Prove it.
- 6. Consider the decimal number

$$x = .b_1b_2b_3b_4b_5\cdots$$

and the associated sequence

$$a_n = .b_1b_2\cdots b_n.$$

- (a) For $m \ge n$, find an upper bound for $|a_m a_n|$.
- (b) Prove that (a_n) is a Cauchy sequence. Do NOT mention the point x in your proof.