MATH 2080 F18 Assignment 3

Due Date: Monday November 19th, in lecture

Important:

- Just working on the problem sets is insufficient. You should be doing plenty of exercises from the book and lecture on your own.
- The questions are taken from the fourth edition of Bartle and Sherbert, and the numbering has changed. If you have an earlier edition, please consult with me or with a classmate to make sure that you have the right question. If you do the wrong question you will not receive credit.

1. Let $X=\left(x_{n}\right)$ be a convergent sequence such that $x_{n} \geq 3$ for all $n \in \mathbb{N}$. Assume that

$$
\lim \frac{x_{n}^{2}}{3 x_{n}-4}=2
$$

Prove that $\lim X=4$.
2. Let $(X)=\left(x_{n}\right)$ be the sequence defined recursively by $x_{1}=1$ and $x_{n+1}=\sqrt{x_{n}+12}$ for all $n \in \mathbb{N}$ such that $n \geq 1$.
(a) Use induction to show that the sequence is bounded above by 4.
(b) Prove that the limit exists.
(c) Evaluate the limit (with a proof).
3. Section 3.3 \# 9. (third edition, same number).
4. Consider the sequence

$$
a_{n}=1+\cos (\pi n), \quad n \in \mathbb{N} .
$$

Show that (a_{n}) does not converge. Hint: give a simple proof, using a theorem in Section 3.4.
5. Let $a_{n}=\sin \left(n^{2}\right)$ for $n \in \mathbb{N}$. Does $\left(a_{n}\right)$ have a convergent subsequence? Prove it.
6. Consider the decimal number

$$
x=. b_{1} b_{2} b_{3} b_{4} b_{5} \cdots
$$

and the associated sequence

$$
a_{n}=. b_{1} b_{2} \cdots b_{n} .
$$

(a) For $m \geq n$, find an upper bound for $\left|a_{m}-a_{n}\right|$.
(b) Prove that $\left(a_{n}\right)$ is a Cauchy sequence. Do NOT mention the point x in your proof.

