Areas and Distances

MATH 1700

Readings

Section 5.1

The problem

Problem: How do you find the area of a shape whose sides are not straight?

Right and left sums

Partial answer: We can approximate the area using rectangles. Let $f(x)$ be a function defined on the interval $[a, b]$. For an integer n set $\Delta x=(b-a) / n$ and let $x_{i}=a+i \Delta x$.

Definition

The right sum of f over $[a, b]$ corresponding to the points $\left\{x_{0}, \ldots, x_{n}\right\}$ is

$$
R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=f\left(x_{1}\right) \Delta x+\cdots f\left(x_{n}\right) \Delta x
$$

The left sum of f over $[a, b]$ corresponding to $\left\{x_{0}, \ldots, x_{n}\right\}$ is

$$
L_{n}=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x=f\left(x_{0}\right) \Delta x+\cdots f\left(x_{n-1}\right) \Delta x .
$$

Right and left sums

Partial answer: We can approximate the area using rectangles. Let $f(x)$ be a function defined on the interval $[a, b]$. For an integer n set $\Delta x=(b-a) / n$ and let $x_{i}=a+i \Delta x$.

Definition

The right sum of f over $[a, b]$ corresponding to the points $\left\{x_{0}, \ldots, x_{n}\right\}$ is

$$
R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=f\left(x_{1}\right) \Delta x+\cdots f\left(x_{n}\right) \Delta x
$$

The left sum of f over $[a, b]$ corresponding to $\left\{x_{0}, \ldots, x_{n}\right\}$ is

$$
L_{n}=\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x=f\left(x_{0}\right) \Delta x+\cdots f\left(x_{n-1}\right) \Delta x .
$$

Idea: if the number of points n is large, this is close to the actual area.

General formula

The points x_{i}^{*} could be in the middle instead: $x_{i-1} \leq x_{i}^{*} \leq x_{i}$, and you still get an approximation to the area.

Definition

The Riemann sum associated with the points $x_{1}^{*}, \ldots, x_{n}^{*}$ is

$$
S_{n}=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Definition of net area

Definition (working definition)
The net area under the graph of $y=f(x)$ between $x=a$ and $x=b$ is

$$
\begin{aligned}
A & =\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} L_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
\end{aligned}
$$

Note: area can be negative with this definition!

A motivating example: distance

If $v=f(t)$ describes the velocity v as a function of time t (in a straight line!)

A motivating example: distance

If $v=f(t)$ describes the velocity v as a function of time t (in a straight line!)
then the distance travelled between $t=a$ and $t=b$ is the area under the graph between a and b.

