Areas and Distances

MATH 1700

Readings

Section 5.1

The problem

Problem: How do you find the area of a shape whose sides are not straight?

Right and left sums

Partial answer: We can approximate the area using rectangles. Let f(x) be a function defined on the interval [a, b]. For an integer *n* set $\Delta x = (b - a)/n$ and let $x_i = a + i\Delta x$.

Definition

The **right sum** of *f* over [a, b] corresponding to the points $\{x_0, \ldots, x_n\}$ is

$$R_n = \sum_{i=1}^n f(x_i) \Delta x = f(x_1) \Delta x + \cdots + f(x_n) \Delta x$$

The **left sum** of *f* over [a, b] corresponding to $\{x_0, \ldots, x_n\}$ is

$$L_n = \sum_{i=1}^n f(x_{i-1}) \Delta x = f(x_0) \Delta x + \cdots + f(x_{n-1}) \Delta x.$$

Right and left sums

Partial answer: We can approximate the area using rectangles. Let f(x) be a function defined on the interval [a, b]. For an integer *n* set $\Delta x = (b - a)/n$ and let $x_i = a + i\Delta x$.

Definition

The **right sum** of *f* over [a, b] corresponding to the points $\{x_0, \ldots, x_n\}$ is

$$R_n = \sum_{i=1}^n f(x_i) \Delta x = f(x_1) \Delta x + \cdots + f(x_n) \Delta x$$

The **left sum** of *f* over [a, b] corresponding to $\{x_0, \ldots, x_n\}$ is

$$L_n = \sum_{i=1}^n f(x_{i-1}) \Delta x = f(x_0) \Delta x + \cdots + f(x_{n-1}) \Delta x.$$

Idea: if the number of points *n* is large, this is close to the actual area.

General formula

The points x_i^* could be in the middle instead: $x_{i-1} \le x_i^* \le x_i$, and you still get an approximation to the area.

Definition

The **Riemann sum** associated with the points x_1^*, \ldots, x_n^* is

$$S_n = \sum_{i=1}^n f(x_i^*) \Delta x.$$

Definition of net area

Definition (working definition)

The **net area** under the graph of y = f(x) between x = a and x = b is

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x$$
$$= \lim_{n \to \infty} L_n = \lim_{n \to \infty} \sum_{i=1}^n f(x_{i-1}) \Delta x$$
$$= \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x$$

Note: area can be negative with this definition!

MATH 1700

A motivating example: distance

If v = f(t) describes the velocity v as a function of time t (in a straight line!)

A motivating example: distance

If v = f(t) describes the velocity v as a function of time t (in a straight line!)

then the distance travelled between t = a and t = b is the area under the graph between *a* and *b*.